

RENIECYT - LATINDEX - Research Gate - DULCINEA - CLASE - Sudoc - HISPANA - SHERPA UNIVERSIA - E-Revistas - Google Scholar - DOI - REDIB - Mendeley - DIALNET - ROAD - ORCID

CDMX, December - 2019

CARDONA-CANTO, Jesús Ramsés ORC ID: 0000-0002-0476-9621, CVU CONACYT ID: 972701 CRUZ-ARGÜELLO, Julio César ORC ID: 0000-0001-8664-9422, CVU CONACYT ID: 221002 TREJO-ARROYO, Danna Lizeth ORC ID: 0000-0001-8744-033X, CVU CONACYT ID: 175528 CANTÉ-GÓNGORA, Daniel ORC ID: 0000-0003-4520-857X, CVU CONACYT ID: 1000575

Instituto Tecnológico de Chetumal

PRESENT:

We are pleased to inform you that your article "Aplicación de nanopartículas de IrO2-WO3 como material anódico para la Reacción de Evolución de Oxígeno en un medio ácido" with keywords "Electyrolyzer, Nanoparticles, Oxygen Evolution Reaction". Has been published on pages 9-15 in "Revista de Simulación y Laboratorio", *V-6 N-19* with ISSN: 2410-3462. Journal edited by ECORFAN-Mexico, S.C. Holding Bolivia. (2019) and DOI: 10.35429/JSL.2019.19.6.9.15

This article is classified in:

Area: Engineering and Technology Field: Engineering Discipline: Electric Engineering Subdiscipline: Electric Engineering

This article is published in: https://www.ecorfan.org/bolivia/researchjournals/Simulacion_y_Laboratorio/vol6num19/Revista_de_Simulacion_y_Laboratorio_V6_N19_2.pdf

The Journal is Arbitrated by peer review is Indexed and deposited in Databases:

RESEARCH GATE (Germany) GOOGLE SCHOLAR (Citation indices-Google) REDIB (Ibero-American Network of Innovation and Scientific Knowledge- CSIC) MENDELEY (Bibliographic References Manager) DULCINEA (Spanish scientific journals) UNIVERSIA (University Library-Madrid) SHERPA (University of Nottingham - England)

We issue this certificate for the purposes of science, technology and innovation

Regards.

PERALTA-CASTRO, Enrique. MsC. CIO-ECORFAN-México, S.C. CONACYT-RENIECYT: 1702902

ECORFAN-México, S.C. 143 – 50 Itzopan Street La Florida, Ecatepec Municipality Mexico State, 55120 Zipcode Phone: +52 I 55 6159 2296 Skype: ecorfan-mexico.s.c. E-mail: contacto@ecorfan.org Facebook: ECORFAN-México S. C. Twitter: @EcorfanC

www.ecorfan.org

Holdings

B S E

exico	Colombia	Guatemala
olivia	Cameroon	Democratic
pain	El Salvador	Republic
uador	Taiwan	of Congo
eru	Nicaragua	Paraguay

Aplicación de nanopartículas de IrO₂-WO₃ como material anódico para la Reacción de Evolución de Oxígeno en un medio ácido

Nanoparticles of IrO₂-WO₃ application as anodic material to Oxygen Evolution Reaction in acid media

CARDONA-CANTO, Jesús Ramsés[†], CRUZ-ARGÜELLO, Julio César^{*}, TREJO-ARROYO, Danna Lizeth y CANTÉ-GÓNGORA, Daniel

Instituto Tecnológico de Chetumal, Tecnológico Nacional de México, Insurgentes 330, Col. David G. Gutiérrez, 77013, MX.

ID 1er Autor: Jesús Ramsés, Cardona-Canto / ORC ID: 0000-0002-0476-9621, CVU CONACYT ID: 972701

ID 1er Coautor: Julio César, Cruz-Argüello / ORC ID: 0000-0001-8664-9422, CVU CONACYT ID: 221002

ID 2^{do} Coautor: Danna Lizeth, Trejo-Arroyo / ORC ID: 0000-0001-8744-033X, CVU CONACYT ID: 175528

ID 3er Coautor: Daniel, Canté-Góngora / ORC ID: 0000-0003-4520-857X, CVU CONACYT ID: 1000575

DOI: 10.35429/JSL.2019.19.6.9.15

Recibido 23 Abril, 2019; Aceptado 30 Junio, 2019

Resumen

El hidrógeno es un portador de energía atractiva y la electrólisis del agua es el proceso de producción más eficiente de H2. Para esto se utilizan los electrolizadores tipo PEM, sin embargo, la REO es la reacción limitante siendo esta el caso de estudio. En el presente trabajo se desarrolló materiales basados en IrO2 y WO3 en diferentes mezclas 100, 70:30, 50:50, 30:70, respectivamente, mediante una mezcla mecánica a partir de dos síntesis de reducción química. La obtención del IrO2 se llevó a cabo mediante 6.25mM de IrCl₃ disuelto en alcohol isopropílico ajustando el pH con 1M de NaOH y se aplicó un reductor de NH4OH a 0.5M ajustando un pH básico de 13. El precursor obtenido se filtró y se calcinó a 400°C durante 1hr. El WO₃ se obtuvo a partir de 10mM de WCl₆ disuelto en alcohol isopropílico y polietilenglicol, generando un precursor de W(OH)_x seguido de un proceso de calcinación a 500° C por 1hr. Se caracterizó el material mediante técnicas electroquímicas de VC, VL y EIE. El material IrO2-WO3 (50:50) presenta una menor energía de sobrepontencial a temperatura ambiente, y una densidad de corriente máxima cercana a 20 mA/cm² a 1.8 V vs Hg/Hg₂SO₄.

Electrolizador, Nanopartículas, Reacción de Evolución de Oxígeno

Abstract

The hydrogen is an attractive energy carrier and electrolysis of water is the most efficient to H₂ production process. The OER in the anode is the limiting reaction being the case of study. In the present work materials based on IrO2 and WO3 were developed in different mechanical mixing 100, 70:30, 50:50, 30:70, respectively, by means of a mechanical mixture from two chemical reduction syntheses. The IrO2 was obtained by 6.25 mM of IrCl₃ dissolved in isopropyl alcohol by adjusting the pH with 1M NaOH and a 0.5 mol NH4OH reductant was applied by adjusting a basic pH of 13. The obtained precursor was filtered and calcined at 400 ° C for 1hr. WO3 was obtained from 10mM WCl₆ dissolved in isopropyl alcohol and polyethylene glycol, generating a precursor of W (OH)_x followed by a calcination process at 500 $^{\circ}$ C for 1hr. The material was characterized by electrochemical techniques of CV, LV and EIS. The IrO₂-WO₃ (50:50) material has lower activation energy of overpotential at room temperature, and a maximum current density close to 20 mA/cm² at 1.8V vs Hg/Hg₂SO₄.

Electyrolyzer, Nanoparticles, Oxygen Evolution Reaction

Citación: CARDONA-CANTO, Jesús Ramsés, CRUZ-ARGÜELLO, Julio César, TREJO-ARROYO, Danna Lizeth y CANTÉ-GÓNGORA, Daniel. Aplicación de nanopartículas de IrO₂-WO₃ como material anódico para la Reacción de Evolución de Oxígeno en un medio ácido. Revista de Simulación y Laboratorio. 2019, 6-19: 9-15

*Correspondencia al Autor (Correo electrónico: jcruz@itchetumal.edu, mx) †Investigador contribuyendo como primer Autor

Introducción

La contaminación ambiental hoy en día es un tema primordial a nivel mundial, las líneas de investigación buscan la obtención de aire limpio a través de la generación de electricidad verde. Si se reemplazan los combustibles fósiles por la electricidad verde, podemos reducir las emisiones de CO₂ y otros contaminantes [15]. Se estima que en el año 2015 se utilizaron alrededor de 9384 millones de toneladas equivalente de petróleo para la generación de energía [2].

Sin duda alguna es una cifra elevada de combustible fósil que, no obstante, presenta muchas desventajas como la ineficiencia en la transformación de energía, la producción de gases de efecto invernadero, lluvia ácida, y otros temas de impacto ambiental. Por otra parte, la principal desventaja del uso de combustibles fósiles es que se considera que para el año 2112 ya no exista ninguna reserva de estos combustibles [2].

Por los motivos antes mencionados, las energías renovables y los sistemas de almacenamiento de Hidrógeno son propuestos como alternativas para no depender de los combustibles fósiles y mejorar la contaminación ambiental [3, 14 & 16]. Por otra parte, se sabe que la molécula de Hidrógeno tiene más densidad gravimétrica comparada con los combustibles fósiles [2]. Sin embargo, la molécula de Hidrógeno no se encuentra de forma libre en la naturaleza. Una de las maneras limpias de obtener H₂ es por medio de la electrólisis del agua, pero la problemática es que se necesita gran cantidad de energía para llevar a cabo la separación de las moléculas de agua y por consecuente el precio es también elevado [4-5].

Existen varias tecnologías para llevar a cabo la electrólisis del agua, en las que destacan electrolizadores de membrana los de intercambio protónico (PEM), la cual es considerada la tecnología más prometedora para implementar el Hidrógeno en la economía [4, 13 & 18]. Si comparamos la tecnología de los sistemas tipo PEM con los electrolizadores de agua alcalina, podemos presenciar que los primeros presentan una clara ventaja, como alta eficiencia energética, alta densidad de corriente mejor confiabilidad, operativa. electrólito sólido, primer arranque y operación segura [1 & 19].

En este tipo de tecnologías (PEM) se usa un medio ácido el cual es la membrana, para el intercambio de protones (H^+). La membrana al presentar grupos R-SO₃H altamente desprotonables, facilitan el transporte de los H^+ a través de la misma, permitiendo llegar estos protones desde el ánodo donde ocurre la oxidación, hasta el cátodo donde ocurre la reducción.

Lamentablemente, la desventaja de este sistema se presenta en la parte anódica, cuya limitante es la reacción de evolución de oxígeno (REO), dado que esta se presenta de manera más lenta que la reacción de evolución de hidrógeno (REH) [2 & 20]. Actualmente se tiene conocimiento que los óxidos metálicos nobles tipo rutilo como el IrO₂ y el RuO₂ son considerados más eficientes para la REO en los electrolizadores tipo PEM [6, 9 & 12]. Comparando estos materiales, el RuO₂ presenta mejor actividad catalítica que el IrO₂, pero menor estabilidad que el IrO₂ en un medio ácido [1].

Por tal motivo el IrO_2 es considerado el candidato más prometedor para la REO [11]. El rendimiento de estos catalizadores en la REO depende en gran medida de las propiedades estructurales y / o morfológicas como el tamaño de partícula, la forma, el área de superficie, y la disposición de los átomos de la superficie [10].

Entonces el alto costo de estos electrolizadores tipo PEM se debe al uso de metales nobles costosos como Pd y Pt en el cátodo para la REH, e Ir y Ru en el ánodo para la REO [8 & 17]. Hoy en día, para reducir los costos de estos óxidos metálicos en los se electrolizadores PEM considera 1a combinación del IrO2 con otros materiales menos costosos, como SnO2, Ta2O5, Nb2O5 y Co₃N [7, 8 & 17].

Por tal motivo el presente trabajo se enfoca en disminuir el costo de esta tecnología, llevando a cabo el desarrollo de materiales basados en IrO_2 y WO₃ en diferentes mezclas 100, 70:30, 50:50, 30:70, respectivamente, mezclando dichos materiales mecánicamente a partir de una síntesis de reducción química y sol gel.

Parte experimental Síntesis para la obtención de WO₃

Se realizó una síntesis sol-gel preparando una solución de 10 mM de WCl₆ en 40 ml de alcohol isopropílico y 5% en volumen de polietilenglicol como agente modificante. La solución se sometió a agitación constante durante 2 horas a 60 °C sucesivamente se evaporó el alcohol a 80 °C durante 52 hrs. Como resultado de la deshidratación se obtuvo un precursor que finalmente se calcinó a 500 °C en una mufla durante 1 hr. Como resultado se obtuvo WO₃.

Síntesis para la obtención de IrO2

Se realizó una síntesis coloidal a partir de una sal precursora, se partió de 6.24 mM de IrCl₃. Se mezcló con 25 ml de alcohol isopropílico a una agitación constante durante 10 minutos. Seguidamente le agregamos 1 ml de 1 M de NaOH con el objeto de obtener una sustitución química y formar hidróxidos. Sucesivamente se agregó una solución 0.5 M de NH4OH mediante un proceso de goteo durante 2 horas con el objeto de monitorear el pH a cada 15 minutos. Sucesivamente se deshidrató la solución durante 24 horas a 100° C. Por último, pasadas las 24 horas, la solución se calcinó 400° C durante 1 hora con un paso de 5°C/min. Sucesivamente fue mezclado mecánicamente con WO_3 a proporciones de 30, 50, y 70 % en peso de IrO₂.

Caracterización electroquímica

El equipo que se utilizó para esta caracterización fue un Potenciostato/Galvanostato SP-150 de la marca biologic, con el cual obtuvimos los parámetros electroquímicos. Se realizaron pruebas como Voltamperometría Cíclica (VC), Voltamperometría Lineal (VL) y Espectroscopía de Impedancias (EIS). Todas las pruebas fueron realizadas en una celda de Pt impresa (figura 1) en condiciones de un electrolizador en un medio de 0.5M de H₂SO₄ a temperatura ambiente.

Figura 1 Celda de Pt impresa y Potenciostato/Galvanostato *Fuente: Elaboración Propia*

ISSN: 2410-3462 ECORFAN® Todos los derechos reservados

Resultados y Discusión

Se determinaron los perfiles de los materiales IrO_2 al 100 % (figura 2) mediante un voltamperograma cíclico. Es posible observar los picos característicos cercanos a 0.5 V vs Hg/Hg₂SO₄ y cercanos a 0 V vs Hg/Hg₂SO₄ atribuidos al par de transición redox del Ir (III) / Ir (IV) y Ir (IV) / Ir (VI) de los grupos superficiales de oxi-iridio. De igual manera es posible observar la evolución de Oxígeno a potenciales cercanos a los 0.8 V vs Hg/Hg₂SO₄. Obteniendo una densidad de corriente de hasta $10mA/cm^2$.

Figura 2 Voltamperograma cíclico del IrO₂ a temperatura ambiente y en un medio 0.5M de H₂SO₄ *Fuente: Elaboración Propia*

En la figura 3 se observa el perfil del IrO_2 -WO₃ (70:30), es posible observar una presencia resistiva atribuida al WO₃ opacando los picos característicos del material IrO_2 sin embargo se observa un incremento de la densidad de corriente superior al doble (20 mA/cm²), esto posiblemente atribuido a la contribución del WO₃ en la reacción de evolución de Oxígeno.

Figura 3 Voltamperograma cíclico del IrO_2 -WO₃ (70:30) a temperatura ambiente y en un medio 0.5M de H₂SO₄. *Fuente: Elaboración Propia*

En la figura 4 se aprecia la mezcla del IrO_2 -WO₃ (50:50), es posible observar un perfil parecido a la figura 1, sin embargo, de igual manera se puede observar el incremento de una capacitancia, esto posiblemente atribuido a la contribución de unión mecánica de los elementos y una dispersión heterogénea de los materiales.

Figura 4 Voltamperograma cíclico del IrO_2 -WO₃ (50:50) a temperatura ambiente y en un medio 0.5M de H_2SO_4 *Fuente: Elaboración Propia*

Al incremento del material WO₃ (figura 5), la electrocatálisis de la reacción de evolución de oxígeno se ve afectada, disminuyendo la densidad de corriente, sin embargo, el cargado de la doble capa es más rápido, atribuyéndose al WO₃ y reduciendo su capacitancia y el sobrepotencial de activación para llevar la reacción de evolución de Oxígeno.

Figura 5 Voltamperograma cíclico del IrO₂-WO₃ (30:70) a temperatura ambiente y en un medio 0.5M de H₂SO₄ *Fuente: Elaboración Propia*

En la figura 6 se puede observar las voltamperometrías lineales de los distintos materiales sintetizados y mezclados en diferentes proporciones. Es posible observar que al incremento de WO₃ el sobrepotencial de activación aumenta, sin embargo, conserva un rendimiento de igual proporción al 50:50. El IrO₂ 100% presenta un rendimiento con mayor calidad, sin embargo, el material 50:50 contiene la característica de reducción de costo y rendimiento adecuado para llevar a cabo la reacción de evolución de oxígeno.

Figura 6 Voltamperometrías lineales de los materiales sintetizados en proporciones de IrO_2 mezclado con WO_3 en diferentes proporciones a Temperatura ambiente y en un medio de 0.5M de H_2SO_4 *Fuente: Elaboración Propia*

Se determinaron las resistencias a altas frecuencias y a la transferencia de carga mediante Espectroscopía de Impedancia Electroquímica. En la figura 7 se observa que el material IrO₂ presenta un semicírculo atribuido a la reacción de evolución de oxígeno teniendo una resistencia a altas frecuencias de 8 Ω cm² y una resistencia a la transferencia de carga de 22 Ω cm². Es posible observar que a potenciales de 0.6V vs Hg/Hg₂SO₄ ya existe un dominio de la parte de transferencia de masa, llevada a cabo por la absorción en la superficie del electrodo de burbujas de O₂ las cuales se van acumulando sobre la superficie rugosa del material hasta evolucionar a la superficie.

Figura 7 Espectro de impedancia electroquímica del material IrO_2 a temperatura ambiente a 0.6V vs Hg/Hg₂SO₄ en un rango de 1MHz a 100mHz en H₂SO₄. *Fuente: Elaboración Propia*

En la figura 8 es posible observar la presencia de dos semicírculos atribuidos a una reacción acoplada a 0.6V vs Hg/Hg₂SO₄ es posiblemente por la reacción superficial que presenta el WO₃ en la presencia de evolución de oxígeno, generando sobre la superficie del electrodo algún oxido superficial se llega a dar con gran velocidad durante la cinética de la reacción. De igual manera se observa la disminución de la resistencia a altas frecuencias a 6 Ω cm² y una resistencia a la transferencia de carga de 14 Ω cm² atribuida a la reacción de evolución de Oxígeno y una segunda reacción acoplada de 54 Ω cm² atribuida a la reacción superficial del WO₃ la cual se puede observar durante la reacción en la voltamperometría cíclica.

Figura 8 Espectro de impedancia electroquímica del material IrO_2 -WO₃ (70:30) a temperatura ambiente a 0.6V vs Hg/Hg₂SO₄ en un rango de 1MHz a 100mHz en H₂SO₄. *Fuente: Elaboración Propia*

ISSN: 2410-3462 ECORFAN® Todos los derechos reservados En la figura 9 se observa una disminución de 5.4 Ω cm² de la resistencia en serie atribuido a la disminución de la energía de sobrepotencial para llevar a cabo la reacción de evolución de oxígeno y una resistencia a la transferencia de carga de 20.9 Ω cm² teniendo una contribución a la generación de un segundo semicírculo, pero una desorción más rápida que en la figura 7, esto atribuido a la generación de O² y control de transferencia de masa a menor frecuencia de barrido.

Figura 9 Espectro de impedancia electroquímica del material IrO_2 -WO₃ (50:50) a temperatura ambiente a 0.6V vs Hg/Hg₂SO₄ en un rango de 1MHz a 100mHz en H₂SO₄ *Fuente: Elaboración Propia*

En la figura 10 podemos observar un control absoluto de la transferencia de masa a 0.6V vs Hg/Hg₂SO₄ las resistencias son incrementadas debido a la presencia superior del WO₃ deduciendo que actúa como un soporte y no como un electrocatalizador sin embargo en exceso bloquea sitios activos del IrO₂ para llevar a cabo la reacción de evolución de Oxígeno.

Figura 10 Espectro de impedancia electroquímica del material IrO₂-WO₃ (30:70) a temperatura ambiente a 0.6V vs Hg/Hg₂SO₄ en un rango de 1MHz a 100mHz en H₂SO₄ *Fuente: Elaboración Propia*

Los autores agradecen al CONACYT-SEP por el financiamiento mediante el proyecto Ciencia Básica 235848: " Estudio y Desarrollo de la Capa Difusora de Gas/Líquido de una Celda de Combustible Regenerativa Unificada tipo PEM".

Conclusiones

Se obtuvieron materiales basados en IrO2 y WO3 en diferentes mezclas 100, 70:30, 50:50, 30:70, respectivamente, mediante una mezcla mecánica a partir de dos síntesis de reducción química. Se caracterizó el material mediante técnicas electroquímicas de VC, VL y EIE. El material IrO₂-WO₃ (50:50) presenta una menor energía de sobrepontencial de activación a temperatura ambiente, y una densidad de corriente máxima cercana a 20 mA/cm² a 1.8 V vs Hg/Hg₂SO₄. De acuerdo a las resistencias de impedancia electroquímica se obtuvo una resistencia a altas frecuencias de 5.4 Ω y una resistencia a la transferencia de carga de 20.9 Ω cm². Se redujo el costo al utilizar el 50% del material IrO₂ y la utilización de un material conductor y soporte como lo es el WO₃. Siendo un material propicio para la reacción de evolución de Oxígeno en un electrolizador.

Referencias

[1] Bhanja, P. y col. (en prensa). IrO₂ and Pt Doped Mesoporous SnO₂ Nanospheres as Efficient Electrocatalysts for the Facile OER and HER. En: *Revista CHEMCATCHEM*.

[2] Browne, M. ; Zdeněk, S. y Pumera, M. (2019). Layered and two dimensional metal oxides for electrochemical energy conversion. En: *Energy Eviron. Sci., 12*, pp. 41-58.

[3] Cruz, J. y col. (2012). Nanosized Pt/IrO₂ electrocatalyst prepared by modified polyol method for application as dual fuction oxygen electrode in unitized regenerative fuel cells. En: *International Journal of Hydrogen Energy*, *37*, pp. 5508-5517.

[4] Faustini, M. y col. (2018). Hierarchically Structured Ultraporous Iridium-Based Materials: A Novel Catalyst Architecture for Proton Exchange Membrane Water Electrolyzers. Manuscrito enviado para publicación. [5] Gao, M. y col. (2017). Pyrite-Type Nanomaterials for Advanced Electrocatalysis. En: *Acc. Chem. Res., 50,* pp. 2194-2204.

[6] García, J. y col. (2017). Generación de energía sustentable, por medio de una celda de combustible microbiana. Caso de estudio: Marismas de Altamira, Tamaulipas y Pueblo Viejo, Veracruz. En: *Revista de Energías Renovables*, 2 (1), pp. 1-11.

[7] Juárez, A. y col. (2018). Caracterización de celda para producción de hidrogeno con fin de generar combustible alternativo para motores de combustión interna. En: *Revista de Energías Renovables*, 6 (2), pp. 26-32.

[8] Jorge, A. y col. (2018). Carbon Nitride Materials as Efficient Catalyst Supports for Proton Exchange Membrane Water Electrolyzers. En: *Nanomaterials*, *8*, pp. 432.

[9] Kadakia, K. y col. (2014). Nanostructured F doped IrO₂ electro-catalyst powders for PEM based water electrolysis. En: *Journal of Power Sources*, *269*, pp. 855-865.

[10] Li, G. y col. (2012). A Hard-Template Method for the Preparation of IrO_2 , and Its Performance in a Solid-Polymer-Electrolyte Water Electrolyzer. En: *ChemSusChem*, *5*, pp. 858-861.

[11] Li, G. y col. (2014). Tribolck Polymer mediated synthesis of Ir-Sn oxide electrocatalyst for oxygen evolution reaction. En: *Journal of Power Sources, 249*, pp. 175-184.

[12] Li, G. y col. (2016). Iridium-Tin oxide solid-solution nanocatalyst with enhanced activity and stability for oxigen evolution. En: *Journal of Power Sources, 325*, pp. 15-24.

[13] Maldonado, V. y col. (2018). Diseño e implementación de un sistema de adquisición de voltaje para celdas de combustible basadas en nopal. En: *Revista de Energías Renovables*, 7 (2), pp. 19-25.

[14] Ma, Z. y col. (en prensa). Reaction mechanism for oxygen evolution on RuO₂, IrO₂, and RuO₂@IrO₂ core-shell nanocatalysts. En: *Revista Journal of Electroanalytical Chemistry*.

CARDONA-CANTO, Jesús Ramsés, CRUZ-ARGÜELLO, Julio César, TREJO-ARROYO, Danna Lizeth y CANTÉ-GÓNGORA, Daniel. Aplicación de nanopartículas de IrO₂-WO₃ como material anódico para la Reacción de Evolución de Oxígeno en un medio ácido. Revista de Simulación y Laboratorio. 2019.

[15] Moore, M.; Lewis, G. y Cepela, D. (2010). Markets for renewable energy and pollution emissions: Evironmental claims, emissionreduction accouiting, and product decoupling. En: *Energy Policy*, *38*, pp. 5056-5969.

[16] Oliveira, L. y col. (2012). A multiscale physical model for the transient analysis of PEM water electrolyzer anodes. En: *Phys. Chem. Chem. Phys, 14*, pp. 10215-10224.

[17] Senthil, S. y col. (2016). Hydrothermal assisted morpholy designed MoS₂ material as alternative chathode catalyst for PEM electrolyser application. En: *International Journal of Hydrogen Energy, XXX*, pp. I-IO.

[18] Wang, J. y col. (en prensa). Graphenesupported iron-based nanoparticles encapsulated in nitrogen-doped carbon as a synergistic catalyst for hydrogen evolution and oxygen reduction reactions. En: *Revista Royal Society of Chemistry*.

[19] Xue, Q. y col. (2018). Carbon nanobowls supported ultrfine iridium nanocrystals: An active and stable electrocatalyst for oxygen evolution reaction in acidic media. En: *Journal of Colloid and Interface Science*, *529*, pp. 325-331.

[20] Yang, J. y col. (2018). A Universal Strategy to Metal Wavy Nanowires for Efficient Electrochemical Water Splitting at pH-Universal Conditions. Manuscrito enviado para publicación.