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Abstract
The abundance of pelagic Sargassum has increased in the Atlantic Ocean since 2011. Massive beaching of these algae 
causes environmental, socioeconomic, and human health problems in several countries in the Greater Caribbean and western 
Africa. Sargassum cleanup is expensive. Its valorization could reduce costs and impacts. The periodicity in landings, its high 
biomass, and the many bioactive compounds and minerals contained in these algae represent an opportunity for its use in 
animal feeding. A review of the existing literature regarding the chemical characteristics of Sargassum and the concentra-
tion of compounds to determine its potential use for animals used for human consumption is presented. The main findings 
are that these pelagic species have high amounts of fiber, salts, complex carbohydrates, and potentially toxic elements that 
limit their use in high quantities in animal nutrition. However, Sargassum also has minerals, trace elements, amino acids, 
fatty acids, and bioactive compounds that could benefit animal health if added as an ingredient at a concentration below 5%. 
Information gaps and recommendations for future research are presented.
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Introduction

Historically the distribution of pelagic Sargassum spe-
cies (Sargassum natans (Linnaeus) Gaillon and S. fluitans 
(Borgesen) Borgesen) was centered in the Sargasso Sea 
(Franks et al. 2016). Periodical minor landings of these 
algae were common in the Caribbean and the Gulf of Mex-
ico during certain months of the year. However, since 2011, 
massive beach cast events have become the “new norm” in 
several Caribbean and Western African countries, as well as 

Florida, Brazil, and Costa Rica (Gower et al. 2013; Smetacek 
and Zingone 2013; Gavio et al. 2015; Rodríguez-Martínez 
et al. 2016; Cabrera et al. 2021). In 2018, satellite observa-
tions confirmed the formation of a Great Atlantic Sargas-
sum Belt extending from West Africa to the Gulf of Mexico 
with an estimated biomass of almost 20 million tonnes in the 
peak month of 2018 (Wang et al. 2019). Sargassum beach 
cast biomass can be considerable. In Brazil, for example, 
614 t landed in one day per kilometer in 2015 (Sissini et al. 
2017). On the northern Mexican Caribbean coast, 524 t were 
removed monthly per kilometer in 2018 (Rodríguez-Martínez 
et al. 2022). The increment in the abundance of these algae 
in the Atlantic has been related to climate change and ocean 
eutrophication (Lapointe et al. 2014; Wang et al. 2019).

Massive Sargassum landings produce ecologic, economic, 
and social impacts. The decay of thousands of tons of stranded 
Sargassum masses generates leachates and particulate organic 
matter that result in Sargassum-brown-tides in nearshore 
waters that lead to the mortality of seagrasses and fauna (van 
Tussenbroek et al. 2017; Rodríguez-Martínez et al. 2019). 
Bacterial activity results in the generation of gases (e.g., 
hydrogen sulfide and methane) that can be harmful to human 
health (Resiere et al. 2021), and cleanup activities are costly 
and result in beach erosion (Chávez et al. 2020). The annual 
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Sargassum cleanup expenses in the Caribbean have been esti-
mated at US$210 million (Davis et al. 2021). These factors 
combined affect the tourist industry and thus the economy of 
many countries (Milledge and Harvey 2016).

Sargassum valorization for food, biofuels, construction 
materials, or pharmaceutical products could alleviate the costs 
associated with its removal and management. Several studies 
have shown that Sargassum contains bioactive compounds 
and chemical elements that could serve for animal feeding 
(Milledge and Harvey 2016; Morais et al. 2020). However, it 
is critical to investigate its nutritional composition and poten-
tially harmful components for animals and consumers.

The present review analyzes the opportunities and limita-
tions of using Sargassum to feed farmed animals (livestock 
and some aquatic species) for human consumption based on 
the existing literature regarding its chemical composition. We 
also highlight research gaps and suggest future research direc-
tions. The insights offered in this review might help stakehold-
ers responsible for Sargassum management and industries.

Materials and methods

We reviewed the existing literature on the chemical com-
position of pelagic Sargassum using Scopus, ISI Web of 
Knowledge, Google Scholar, and PubMed. The search 
engines used the following keywords: pelagic Sargassum, 
composition, utilization, animal feeding, rumen, fermenta-
tion, and toxicity. Thirty-two scientific manuscripts were 
obtained about research conducted in 15 countries and the 
Atlantic open ocean (Fig. S1).

Using the abovementioned information, we created a 
database with the following information: authors, sampling 
dates, Sargassum species and morphotypes analyzed, sam-
pling sites, zones, and seasons, drying and grinding meth-
ods, and if samples were washed before the chemical analy-
ses. The pelagic Sargassum influx to Atlantic countries has 
three morphotypes: S. fluitans III, S. natans I, and S. natants 
VIII (Parr 1939). Some studies analyzed the morphotypes 
separately while others did not. None of the studies reported 
removing the epibionts (e.g., serpulids, bryozoans, and cal-
careous algae) or the motile fauna (e.g., crustacea, mol-
lusks, and polychaeta) before the chemical analysis. The 
database containing the values (e.g., mean, median, or 
interval) reported for the chemical analyses of organic and 
inorganic elements is available as supplementary material 
(Table S1). The ranges for each compound or element are 
presented in Tables 1, 2, 3, 4, and 5; extreme values were 
removed and colored in red in the general database, and 
those whose units were transformed from the source are 
marked in blue. Every value is reported on dry matter basis 
unless otherwise is mentioned.

Results/ discussion

Moisture and energy

Fresh pelagic Sargassum has a high moisture content 
(82–95%; Milledge et  al. 2020), making it difficult to 
transport, store, and use. When the algae are dried and 
transformed (ground) into meal the moisture reduces to 
5–17% (Table 1), which is close to that desired in ani-
mal diets (~ 12%; EU 2015). The drying process reduces 
the volume and the risk of contamination by bacteria and 
fungi, prevents crude seaweed extracts from gelification, 
and allows storage for several years (Ling et al. 2015; Bad-
mus et al. 2019). The drying method (e.g., oven-dried, 
lyophilized, or sun-dried) does not appear to affect the 
content of protein and lipids; however, it could modify 
the content of some minerals, ascorbic acid, fatty acids, 
and amino acids. The sun-drying method, for example, led 
to higher quantities of phenolic compounds and mannitol 
and lower ones of fucoxanthin and monosaccharides than 
freeze-drying (Machado et al. 2022).

Sargassum  meal has low gross energy content 
(2.2–3.3 kcal  g−1; Table 1) in comparison to other ener-
getic ingredients employed in animal feeding, such as 
cereal grains (3.8–4.4 kcal  g−1), fats (9.2–9.4 kcal  g−1), 
and oils (9.3–9.5 kcal   g−1) (Santiago Rostango et al. 
2017). It cannot be included in animal diets in large 
volumes, such as with some cereal grains (55–70%; 
Cuca-García et al. 2009), due to the high amount of 
fiber, salt, and potentially toxic minerals.

Protein and amino acids

Crude protein content in Sargassum meal f luctuated 
from 2.2 to 15.4% (Table 1), with most of the values 
being similar to those of other brown algae or forage 
grasses (8.5–13.6%; Yuan 2008; Corino et al. 2019) and 
cereal grains (4.5–14%), like sorghum, corn, oat, wheat, 
barley, and rice (8–15%). According to Gojon-Báez et al. 
(1998) 95% of Sargassum spp. protein may be degraded. 
However, the protein content is low compared to that 
found in distillers’ dried grains (27%), canola (32–38%), 
soybean meal (44%), meat meal (45–55%), and fish meal 
(64%) (Cuca-García et al. 2009; Santiago Rostango et al. 
2017; De Blas et al. 2019). The relatively low protein 
content in Sargassum limits its use as the primary source 
of protein in the diet of monogastric animals, ruminants, 
and aquaculture, as these animal species have higher 
requirements (e.g., fish and shrimp 35–40%, broilers 
17–23%, and laying hens 16–20%; Cruz-Suárez et al. 
2008; NRC 2011; Nates 2016; Aviagen 2019; Hy-Line 
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2020). The protein content in Sargassum could be 
increased through a biorefinery process, as has been 
done with Ulva ohnoi to produce salts, sulfated poly-
saccharides, and protein-enriched biomass (Magnusson 
et  al. 2019). Nevertheless, this approach needs to be 
investigated in Sargassum.

Despite the low protein level, its quality is good since it 
contains all essential amino acids for birds, pigs, fish, and 
shrimp (Table 2). However, the bioavailability of amino 
acids from pelagic Sargassum needs to be evaluated because 
some compounds (e.g., alkaloids, tannins, and dietetic fiber) 

could shape their digestion and absorption in the gastroin-
testinal tract (Cherry et al. 2019).

Also, it must be considered that brown algae have a 
substantial non-protein nitrogen fraction, varying from 
12–29% (Bikker et al. 2020). In ruminants, this may not 
represent a limitation since microorganisms in the rumen 
efficiently use non-protein nitrogen to increase the pro-
duction of bacterial protein (Bikker et al. 2020), which 
may constitute 70 to 100% of the nitrogen available in the 
lower part of the digestive tract in animals that consume 
fibrous diets with low protein content (Shimada 2018).

Table 1  Proximate analysis and 
other components of pelagic 
Sargassum meal (dry matter 
basis)

References: 1 Davis et al. 2021: 2Díaz-Piferrer 1979; 3De Vrije 2016; 4Milledge et al. 2020; 5Mohammed 
et al. 2020; 6Desrochers et al. 2020; 7Oyesiku and Egunyomi 2014; 8Robledo et al. 2021; 9Saldarriaga-Her-
nandez et al. 2021; 10Solarin et al. 2014; 11Vázquez-Delfín et al. 2021; 12Viana Ramos et al. 2000; 13Wang 
et al. 2009; 14Webber et al. 2019; 15Van Ginneken et al. 2011; 16 Machado et al. 2022. GA: Gallic acid. PG: 
phloroglucinol

Component Unit Content References

Proximate analysis
  Moisture % 5.0—17.0 1, 6, 7, 10, 9, 11, 16
  Crude protein % 2.2—15.4 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 14
  Ether extract % 0.01—4.6 4, 5, 7, 9, 11, 14
  Crude fiber % 7.2—17.0 2, 7, 10
  Ash % 8.7—55.7 1, 2, 4, 5, 7, 8, 9, 10, 11, 13, 16
  Carbohydrates % 5.4—77.6 4, 5, 8, 9, 11, 14
  Nitrogen free extract % 57.7—74.2 2, 7, 10
  Gross energy kcal  g−1 2.2—3.3 2, 4, 8
Vitamins
  Ascorbic acid mg (100 g)−1 3.2 2
  Thiamin mg (100 g)−1 0.02 2
  Riboflavin mg (100 g)−1 0.3 2
  Niacin mg (100 g)−1 1.5 2
Pigments 2
  Carotenes mg (100 g)−1 0.01 2
  Chlorophyll a mg  g−1 0.13—0.27 11
  Chlorophyll c mg  g−1 0.04—0.07 11
  Total carotenoids mg  g−1 0.08—0.13 11
  Fucoxanthin µg  g−1 58—504 16
Phenolic compounds
  Total phenolic compounds mg (100 g)−1 80 7
  Total phenolic content mg GA  g−1 1.5—2.3 9

mEq PG  g−1 1.0—29.5 1, 4, 16
  Phenols µg  mL−1 6.1—9.2 11
  Tannins mg (100 g)−1 122.5 7
  Flavonoids mg (100 g)−1 775 7
  Terpenoids mg (100 g)−1 66.5 7
  Phlorotannins mEq PG  g−1 0.34—3.6 1, 16
Antinutrient factors
  Saponins mg (100 g)−1 525.0 7
  Alkaloids mg (100 g)−1 77.5 7
  Cardiac glycosides mg (100 g)−1 16.5 7
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Lipids (ether extract, fatty acids, vitamins, 
and pigments)

The ether extract content in pelagic Sargassum is low 
(0.01–4.6%; Table  1), like in other Sargassum species 
(0.5–3.0%; Yuan 2008; Corino et al. 2019). This fraction 
includes all fat-soluble compounds, like vitamins, pigments, 
and fatty acids. Sargassum is considered a good source of 

vitamins when fresh (Yuan 2008), yet, when converted into 
meal, it contains low levels of thiamin (0.02 mg (100 g)−1), 
niacin (1.5 mg (100 g)−1), and riboflavin (0.3 mg (100 g)−1) 
(Table 1), due to the drying process (Yuan 2008).

Carotenoid concentration in Sargassum ranged from 
0.08 to 0.13 mg  g−1 (Table 1) and consisted of β-carotene, 
fucoxanthin, violaxanthin, diatoxanthin, and chlorophyll c 
(Milledge and Harvey 2016; Corino et al. 2019). β-carotene 
is a vitamin A precursor with antioxidant properties for 
several mammals and aquatic species (NRC 2011; Çalişlar 
2019; Mary et al. 2021). Fucoxanthin was reported in con-
centrations ranging from 58 to 504 µg  g−1 (Machado et al. 
2022) and is of particular interest due to its antioxidant, anti-
carcinogenic, anti-inflammatory, and antiobesogenic proper-
ties; it also reduces the plasmatic concentration of glucose 
and insulin, steatosis, and insulin resistance (Cherry et al. 
2019; Ojulari et al. 2020; Peñalver et al. 2020).

Among saturated fatty acids (Table 3), palmitic acid 
(C16:0) dominates (24–55%), while among the unsaturated 
fatty acids the presence of eicosapentaenoic (C20:5 EPA: 
0.05–5%) and docosahexaenoic (C22:6 DHA: < 0.05–13%) 
acids is of particular interest since they are usually low 
in land vegetable sources and very important for human 
and animal health (Gammone et al. 2019). Thus, the lipid 

Table 2  Amino acids content (g (100 g)−1 dry matter basis) in pelagic 
Sargassum meal

References: Viana Ramos et al. 2000; Milledge et al. 2020

Amino acid Content Amino acid Content

Alanine 0.10 − 0.34 Lysine 0.10 − 0.28
Arginine 0.10 − 0.19 Methionine 0.04 − 0.14
Aspartic acid 0.16 − 0.48 Phenylalanine 0.10 − 0.19
Cystine 0.09 − 0.11 Proline 0.08 − 0.18
Glutamic acid 0.24 − 0.85 Serine 0.08 − 0.22
Glycine 0.08 − 0.32 Threonine 0.10 − 0.21
Histidine 0.04 − 0.07 Tyrosine 0.00 − 0.08
Isoleucine 0.09 − 0.18 Tryptophan 0.04 − 0.05
Leucine 0.13 − 0.28 Valine 0.09 − 0.35

Table 3  Fatty acids content 
in pelagic Sargassum meal 
(dry matter basis). %TFA: 
percentage of total fatty acid 
content

References: 1 Van Ginneken et al. 2011; 2Milledge et al. 2020

Fatty acid %TFA ug  g−1 meal Reference

Saturated
  C16:0 Hexadecenoic acid 23.61—55.14 3,006 1, 2
  C17:0 Heptadecanoic acid 0.13—1.83 1
  C18:0 Octadecanoic acid 0.85—7.60 369 1, 2
  C20:0 Eicosanoic acid - 0.94 1
  C22:0 Docosanoic acid 0.63—1.28 1
  C24:0 Tetracosaenoic acid 0.05—0.44 1
Monounsaturated
  C14:1 cis-9 Tetradecenoic acid 0.05—0.43 1
  C15:1 5-pentadecenoic acid 0.05—0.39 1
  C16:1 9- hexadecenoic acid 3.54—8.28 325 1, 2
  C17:1 7- heptadecanoic acid 0.05—0.63 1
  C18:1 7- octadecanoic acid 10.71—16.83 1,095 1, 2
  C20:1 11-eicosanoic acid 0.05—2.47 1
  C22:1 11-docosaenoic acid  < 0.05—2.11 1
Polyunsaturated
  C18:2 9-octadecanoic acid 3.00—7.90 230 1, 2
  C18:3 6-octadecanoic acid 1.00—5.90 121 1, 2
  C18:4 all-cis-6,9,12,15 -octadecatetraenoic acid 0.07—1.34 1
  C20:4 all-cis-5,8,11,14- eicosatetraenoic acid 3.01—12.95 581 1, 2
  C20:5 Eicosapentaenoic acid 0.05—5.00 329 1, 2
  C22:4 all-cis-7,10,13,16-docosatetraenoic acid  < 0.05—1.17 1
  C22:5 7,10,13,16,19- docosapentaenoic acid 0.05—0.36 1
  C22:6 4,7,10,13,16,19- docosahexaenoic acid  < 0.05—13.00 970 1, 2
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fraction of Sargassum could be a good supply of fatty acids 
for farmed animals.

Pelagic Sargassum also contains metabolites, like tan-
nins (123 mg (100 g)−1), flavonoids (775 mg (100 g)−1) and 
phlorotannins (0.3–0.9 mEq PG  g−1), and secondary metab-
olites, like terpenoids (67 mg (100 g)−1) and carotenoids 
0.08–0.13 mg  g−1) (Table 1). Seaweeds produce these com-
pounds to protect them from external conditions, stress, and 
herbivory (Chojnacka et al. 2012). A moderate content of 
tannins may be beneficial in animal diets because they exert 
antimicrobial, antioxidant, antiviral, and anti-inflammatory 
activities (Shipeng et al. 2015; Tamama 2020). A high tan-
nin content, however, can significantly reduce the digest-
ibility of proteins and amino acids (up to 23%) in poultry 
and pigs. The tannin content in some cereals used for animal 
feedings, such as sorghum (50–7200 mg (100 g)−1 DW) and 
barley (550–1230 mg (100 g)−1 DW) (Gilani et al. 2005), 
can be higher than that in pelagic Sargassum (Table 1).

Among the antinutrient factors, saponins content in Sar-
gassum is 525 mg (100 g)−1 (Table 1), which is lower than in 
red and green seaweeds (13,000–17,000 mg  kg−1 DW; Feroz 
2018). Saponins have antioxidant, antibacterial, antifungal, 

and nematocidal activity (Feroz 2018). Alkaloids are also 
present at a concentration of 77.5 mg (100 g)−1 (Table 1). 
Alkaloid presence in marine algae is rarer than in terres-
trial plants (Güven et al. 2010). For example, Carrillo et al. 
(1992) did not detect alkaloids in S. sinicola; however, 
ephedrine, cuscohygrine, pyrvinium, and doxapram were 
reported in S. tenerrimum (Chitari et al. 2018). Pelagic 
Sargassum has sterols as structural components of its cell 
membrane at a concentration of 16.5 mg (100 g)−1 (Table 1). 
Some of the Sargassum’s sterols are cardiac glycosides 
which could help to treat cardiac failure and atrial arrhyth-
mias (Khalid et al. 2018).

Carbohydrates, nutrients, and organic elements

Carbohydrates (5–78%) and nitrogen-free extract (58–74%) 
contents in pelagic Sargassum showed high variability 
among studies (Table 1). The content of crude fiber (7–17%; 
Table 1) is below the quantity considered fibrous, such 
as that of alfalfa hay (25%), oat straw (41%), and weeds, 
grasses, and stubble (23–35%) (Shimada 1983). The amount 
of total dietary fiber (TDF: 31–37%) in pelagic Sargassum 
(Table 4) is lower than that reported for benthic Sargassum 
species (TDF: 63%; Yuan 2008.

The amount of soluble dietary fiber (SDF), composed 
of alginates (9–35%), fucoidan (4–20%), alginic acid 
(7–24%), alginate uronic acids (20–24%), fucoidan uronic 
acids (6–12%), alginate sulfates (5–7%), and fucoidan sul-
fates (1–17%), is higher than that in oat hulls (2%), alfalfa 
meal (8%), and cellulose (2%) but below that of pectin (65%) 
and inulin (> 90%) (Desbruslais et al. 2021). The SDF can 
improve the satiety of animals and produce short-chain 
fatty acids, but at high levels could increase the intesti-
nal viscosity, promoting the presence of Escherichia coli 
while decreasing nutrient absorption, and thereby having an 
impact on growth performance and intestinal health (Jime-
nez-Escrig and Goñi 1999; Holdt and Kraan 2011; Bikker 
et al. 2020; Chuang et al. 2021). Therefore, Sargassum inclu-
sion in animal diets should not be above 10% for monogas-
tric and 30% for ruminants. Additions below 5% could even 
have potential benefits for both groups, as has been shown 
for other brown seaweeds (Holdt and Kraan 2011; Makkar 
et al. 2016; Corino et al. 2019; Bikker et al. 2020; Coudert 
et al. 2020; Desbruslais et al. 2021; Li et al. 2021). Further 
studies are needed to elucidate the best amount of Sargassum 
in the diet of different animal species to minimize undesir-
able side effects while obtaining maximums benefits.

The concentration of organic elements in pelagic Sar-
gassum meal is 27–33% carbon, 3–5% hydrogen, 21–32% 
oxygen, 0.05–1.7% nitrogen, and 0–1.4% sulfur (Table 5). 
Organic element concentration can vary between morpho-
types, collection sites, processing methods, and types of 

Table 4  Fiber and polysaccharides content in pelagic Sargassum 
meal (dry matter basis)

References: 1 Aponte de Otaola et  al. 1983; 2Davis et  al. 2021; 3de 
Vrije 2016 (in Desrochers et  al. 2020); 4Díaz-Piferrer 1979; 5Mille-
dege et  al. 2020; 6Ocean Harvest 2016 (in Desrochers et  al. 2020); 
7Ortega-Flores et  al. 2022;, 8Robledo et  al. 2021; 9Rosado-Espinosa 
et  al. 2020; 10Vázquez-Delfín et  al. 2021; 11Webber et  al. 2019; 12 
Machado et al. 2022

Fiber fractions Content References

Dietary fiber
  Total dietary fiber (TDF) % 31.2—37.4 5
Carbohydrates
  Fucoidan % 4.4—20.0 6, 7, 8, 9, 10, 11
  Alginic acid % 6.8—23.6 1, 6
  Alginates % 5.1—34.6 2, 4, 7, 8, 9, 10, 11, 12
  Alginate uronic acids % 19.8—24.4 7, 10
  Fucoidan uronic acids % 5.5—11.9 7, 10
  Alginate sulfates % 5.4—7.0 7
  Fucoidan sulfates % 0.8—17.0 7, 10
  Mannitol % 10.25 6
  Laminarin % 12.6 6
  Total sugars % 11.3 3
  Glucose % 4.5 3
  Fucose % 4.2 3
  Galactose % 1.2 3
  Xylose % 0.1 3
  Arabinose % 0.2 3
  Mannose % 0.2 3
  Rhamnose % 0.1 3
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analysis (Table S1). The C: N relation fluctuates between 
17 and 35%.

Inorganic elements (ash, salts, minerals, and trace 
elements)

The ash content (9- 47%) and the concentration of inorganic 
elements in pelagic Sargassum meal can be highly variable, 

depending on the morphotypes, sampling date and site, dry-
ing method, and sample processing technique (Table S1). 
Salts occupy a significant portion of the chemical fraction 
(Table 5). The high quantity of calcium carbonate (6–11% 
dry weight and 2.1% wet weight) results mainly from the 
presence of epibionts that have skeletons made by this com-
pound (e.g., bryozoans, serpulids, and calcareous algae) and 
can cover up to 70% of the stem and blades (Salter et al. 

Table 5  Nutrients and inorganic matter in pelagic Sargassum meal (dry matter basis). LOD: limit of detection. Conc.: Concentration; Ref.: Ref-
erences

References: 1 Saldarriaga-Hernandez et  al. 2021; 2Vázquez-Delfín et  al. 2021; 3Collado-Vides, 2020; 4Milledge et  al. 2020; 5Wilson-Harward 
2015 (in Desrochers et al 2020), 6Díaz-Piferrer 1979;7Robledo et al. 2021; 8Dzama and de Graft 2016, 9Webber et al. 2019, 10Solarin et al. 2014; 
11Davis et al. 2021; 12Fernandez et al., 2017; 13Rodríguez-Martínez et al. 2020; 14Tirolien 2019 (in Desrochers et al. 2020); 15Johnson and Bra-
man 1975; 16Mohammed et al. 2020; 17Amado-Filho et al. 2008; 18Ocean Harvest 2016 (in Desrochers et al. 2020); 19Tejada-Tejada et al. 2021; 
20Oyesiku and Egunyomi 2014; 21Devault et al. 2022; 22Dassié et al. 2021

Compound Conc Ref Element Conc Ref

Nutrients Macroelements (ppm)
  N % 0.05—1.7 1, 2. 3, 4, 5, 6, 7 Al  < LOD—4,187 4, 11, 12, 13, 22
  C % 26.8—33.0 1, 2, 4, 7 Ag 0.01—119 3, 12
  H % 3.1—4.8 1,4 B 102,243 -116,294 12
  O % 20.6—31.8 4 Ba 19.2—23.2 11
  S % 0—1.4 1, 4 Be 0.006—0.05 12
  C:N ratio 17.0—35.0 2 Ca 29.0—136,146 4, 6, 9, 11, 12, 13, 21
  Phosphate (ppm) 0.8—51.0 8, 9, 10 Cl 23.0—53,101 8, 13
  Ammonia (ppm) 354—741 8 K 0.7—69,359 4, 8–13, 20
  Nitrates (ppm) 180 – 2,377 8,9 Mg 30.0—18,241 4, 5, 9, 11–13, 20

Na 3,802—78,094 5, 9, 11, 12
Salts P 2.3 – 1,460 1, 3–6, 13, 20
  NaCl (% DM) 15.2—23.1 4 S 9,462—24,773 13
  NaCl (% ash) 19.0—71.6 4
   CaCO3 (% ash) 11.7—42.1 4 Microelements (ppm)
   CaCO3 (% DM) 6.3—10.8 11 Co 0.2–1 1, 11, 12
   CaSO4 (% ash) 3.4—7.7 4 Cr 0.3–56 1, 4, 11, 12, 13, 1, 22
  KCl (% ash) 0.3—23.9 4 Cu 0.2- 264 1, 2, 4, 5, 8, 9, 11, 12, 

17, 22
  MgO (% ash) 4.9—8.3 4 Fe 12–5,910 1, 2, 4, 5, 6, 8, 9, 11, 

17, 20, 22
   K3Na  (SO4)2 (% 

ash)
0.3—8.3 4 I 0.4–85 18, 20

   Na2SO4 (% ash) 0.2—3.2 4 Mn  < 3–139 4, 11, 13, 22
Mo 0.6–3 12

Potentially toxic trace elements (ppm) Ni 3.5–39.8 11, 12, 19,
   AsTotal 0.0001—225 1, 2, 4, 8, 11–17, 22 Rb 30–143 13
   AsOrganic 17.0 18 Se  < 0.01 13
   AsInorganic 0.2—28.0 18, 21 Si 447–2,877 13
  Cd 0.1—119 1, 2, 4, 8, 11, 12, 

14, 17–19, 22
Sr 1,605–2,564 13

  Pb 0.2—335 1, 2, 4, 8, 11, 12, 
14, 17–19

Th 3–23 13

  Hg  < 0.005—2 4, 8, 12, 14, 18, 22 U 0.8–48 11,13
V 2.3–31.9 11,22
Zn 0.05–100 4, 8, 12, 14, 18
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2020). The concentration of sodium chloride (NaCl) is also 
high (15 − 23% dry weight). Thus, incorporating Sargas-
sum in quantities above 10% of animal diets could nega-
tively affect animal metabolism. In chickens and hens, for 
example, high quantities of NaCl produce a laxative effect, 
favoring the development of microbial pathogens in wet beds 
and affecting the productive variables and animal perfor-
mance (Rojkind 1977; Bikker et al. 2020). Poultry, pigs, and 
bovines can tolerate concentrations of NaCl of 17, 30, and 
45 g  kg−1 (dry weight), respectively (NRC 2005). Higher 
quantities can reduce the digestibility of other components 
of the algae by 65–80% (Milledge et al. 2020). In rumi-
nants, the tolerance to mineral salts is higher, considering 
that clean and low-salinity water is provided (Underwood 
and Suttle 1999). However, in ovine and goats, the inclu-
sion of 25 to 30% of a benthic Sargassum species in the diet 
resulted in higher water consumption and urine excretion 
(Marín et al. 2003, 2009; Casas-Váldez et al. 2006), which 
compromise kidney functioning and may result in kidney 
failure. In fish, NaCl is absorbed straight from the water; 
thus, its addition as a dietary supplement is usually ineffec-
tive. However, adding NaCl via food may provide a physi-
ological benefit for some marine fish cultured in freshwater, 
resulting in enhanced growth (NRC 2011).

Like other brown algae, Sargassum can absorb macro and 
microelements from the water. Some minerals in pelagic 
Sargassum are adequate dietary supplements for animals, 
including calcium, iron, manganese, potassium, selenium, 
sodium, and zinc (Table 5). In the case of iodine, the concen-
tration range (0.4–85 ppm) is low compared to that reported 
for benthic Sargassum species (216–5,940 ppm; Zubia et al. 
2003; Corino et al. 2019). A study by Gojon-Báez et al. 
(1998) on bovine livestock showed that the mineral degra-
dability of Sargassum spp. was 78%, making it an adequate 
alternative for supplying the minerals needed for their health 
and growth. In the case of pelagic Sargassum, specific min-
eral absorption by different animal species (terrestrial and 
aquatic) and their potential benefits or constraints need to 
be studied.

A significant limitation posed for pelagic Sargassum in 
animal feeding is its capacity to absorb potentially toxic 
trace elements due to alginates and fucoidans in their cell 
wall, which serve as binding sites for metal and semi-metal 
ions (Mohammed et al. 2022). Several studies found that 
pelagic Sargassum usually has low concentrations of Co, 
Cr, Mn, Ni, and Zn (Table 5). Cd, Pb, and Hg concentra-
tions are usually low, but can rarely be high (Table S1), with 
maximum values of 119, 335, and 2 ppm (DW), respectively. 
In the case of Cd, the maximum limit allowed in the diet for 
bovines, ovines, and caprines is 1 ppm. For other terrestrial 
animal species (excluding pets), the limit is 0.5 ppm (EU 
2002), and for fish is 10 ppm (NRC 2005). Regarding Pb, the 
maximum limit allowed in raw material that will be included 

in animal diets is 10 ppm, and when used as complete food 
(with a maximum humidity of 12%) is 5 ppm (NRC 2005; 
EU 2015). The concentration of Hg in pelagic Sargassum 
samples fluctuated from < 0.005–2 ppm; therefore, on occa-
sions, it can surpass the limit allowed for ingredients in food 
of terrestrial animals (0.1 ppm) and fish (1 ppm) (EU 2015).

Arsenic deserves particular attention because, even 
though the concentration in Sargassum can be variable 
among sites and morphotypes (< 1 − 225 ppm), most stud-
ies reported values (Table S1) that exceed the limit allowed 
for the use of algae for nutritional uses in most countries. 
Sargassum seems to bioaccumulate arsenic due to its resem-
blance to phosphate, allowing arsenate to enter algal cells 
via a phosphate-transporting mechanism (Wang et al. 2013). 
According to the European Union, seaweed meal and feed 
materials generated from seaweed must not contain more 
than 40 ppm of total As, whereas complete animal feed con-
taining seaweed may not have more than 10 ppm (EU 2015). 
The concentrations of total arsenic reported by several stud-
ies for pelagic Sargassum led the French Government to 
recommend not using it for food products (ANSES 2017). 
Nevertheless, it is crucial to consider that arsenic toxicity 
depends on several factors, as discussed below.

Arsenic occurs in organic and inorganic forms, with the 
latter considered highly toxic. Several authors have pointed 
out that the organic form predominates in seaweeds (Cabrita 
et al. 2016; Taylor et al. 2017; Circuncisão et al. 2018; Mon-
gail et al. 2018). However, the few studies analyzing arsenic 
speciation in pelagic Sargassum report inorganic As con-
centrations ranging from 0.2–28 ppm (Johnson and Braman 
1975; Desrochers et al. 2020; Devault et al. 2022). This 
finding restricts the direct use of pelagic Sargassum in ani-
mal feeding, as the maximum limit of inorganic As allowed 
in seaweeds intended for animal nutrition is < 2 ppm (EU 
2015). However, different processing techniques can reduce 
the concentration of arsenic, including activated carbon, cit-
ric acid, hydrochloric acid, boiling water (pre-cook), or a 
combination of these treatments (Sugawa-Katayama et al. 
2005; Kang et al. 2021). In S. fusiforme, for example, arsenic 
concentration was reduced from 75 to 1.6 ppm through a 
sequential process of hot water, citric acid, and fermentation 
(Wang et al. 2022). The processes mentioned above should 
be tested in pelagic Sargassum as this could enhance its 
acceptance by the animal-fed industry if the benefits exceed 
the cost.

Arsenic toxicity also depends on the demethylation 
processes during its passage through the gastrointesti-
nal tract. Some authors suggest that the cooking process 
allows organic As to remain intact after the digestive pro-
cess and to be absorbed by the hepatic portal system, thus 
avoiding the transformation of organic As into inorganic 
As (Chavez-Capilla et al. 2016). Choi et al. (2020) also 
found that in ruminants fed with S. fusiforme (with As 



 Journal of Applied Phycology

1 3

concentration of 94.17 ± 4.96 ppm DM), the consumption 
did not necessarily cause toxicity. According to Beres-
ford et al. (2001), the inorganic arsenic true absorption 
coefficient of ruminants is considerably lower than that of 
non-ruminant animals, which can have complete absorp-
tion. Anaerobic fermentation in the rumen may play an 
essential role in this respect. In some aquatic species, like 
tilapia, less organic arsenic is deposited in tissues when it 
enters through food than when absorbed from the water 
(Suhendrayatna et al. 2001). More research is necessary on 
the routes that arsenic takes within the bodies of different 
animal species when consumed.

Several studies suggest that the transfer of As from the 
food to edible tissues of animals reared for human consump-
tion is low due to the process of detoxification and the rapid 
excretion of metabolites (Ghosh et al. 2012; Mongail et al. 
2018; Upadhyay et al. 2019). Mongail et al. (2018) observed 
that when including the brown algae Ascophyllum nodosum 
 (AsTot: 31.1–56.3 ppm;  AsInorg: 0.1–1.4 ppm) in the diet of 
poultry (2.5%) and ruminants (100–120 g  day−1 for bovine 
meat and 120–150 g  day−1 for milk cows), the quantity of 
As deposited in chicken meat, beef meat, and cow milk 
was low, with values of 0.00015, 0.002, and 0.00035 ppm, 
respectively. These values are below the limit SENASICA 
(2020) established for different animal species and products 
(Table S2). Finally, when heavy metals and semi-metals that 
are bound to alginic acid or alginates enter the human body, 
they are chelated or rendered insoluble because the enzymes 
in the gastrointestinal tract cannot digest alginic acid or its 
salts (Ruperez and Toledano 2003; Holdt and Kraan 2011; 
Szekalska et al. 2016; Circuncisao et al. 2018).

Conclusion

The high biomass of pelagic Sargassum that periodically 
beaches in several Atlantic countries represents an oppor-
tunity to obtain valuable compounds for the livestock and 
aquaculture industries. These algae have high amounts of 
fiber, mineral salts, complex carbohydrates, and potentially 
toxic elements that limit their use in high quantities in ani-
mal nutrition. However, they also have many minerals, trace 
elements, amino acids, and bioactive compounds that can 
benefit animals, even in small quantities. Sargassum addi-
tion to the diet can ensure a good supply of calcium, sodium, 
potassium, phosphorus, and magnesium. Fucoxanthin is 
particularly interesting due to its antioxidant, anticarcino-
genic, and anti-inflammatory properties. Tannins may also 
benefit animals if added in moderate quantities due to their 
antimicrobial, antioxidant, antiviral, and anti-inflammatory 
activities, and saponins due to their antibacterial, antifun-
gal, and nematocidal properties. The bioactive compounds 
with antimicrobial activity could be a natural alternative in 
countries where prophylactic antibiotics for animal farms are 

banned. Some sterols in these algae could also treat cardiac 
failure and atrial arrhythmias.

The presence of the unsaturated fatty acids EPA and DHA 
are relevant due to their importance for animal health and 
their scarcity in land vegetable sources. However, until effi-
cient arsenic removal methods are in place, adding Sargas-
sum meal to diets is recommended below 5% of the inclu-
sion. This amount will ensure that the content of potentially 
toxic elements in livestock feed is below the limits estab-
lished by international organizations and would not represent 
a risk to animals or the final consumers' health. Research on 
the transference of potentially toxic elements to products and 
consumers is necessary before employing higher quantities 
of Sargassum meal in animal diets. Adequate methods to 
collect, process, and store these algae to preserve the qual-
ity of compounds and compensate for scarcity periods are 
essential due to the high spatial and temporal variability in 
beach cast volumes. Finally, it should be noted that the con-
centration of elements and proportion of compounds found 
in pelagic Sargassum can be variable among morphotypes, 
in space and time, and depending on the processing methods 
employed. Thus, after selecting the best processing methods 
for specific elements or compounds, Sargassum assemblages 
intended for animal nutrition should be tested periodically 
to ensure they meet safety standards.
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