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SCIENCE
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ABSTRACT
A digital soil map of Quintana Roo was compiled at a 50 m pixel resolution using a
geomorphopedological approach to produce a map that reflects a synoptic view of the
geomorphology, environmental conditions and associated soils. Initially, it was developed
using a geopedological approach and then converted to a digital map. The map was derived
from soil-forming factors using mathematical methods to infer information in places where
data were not available. Its compilation included three stages; the first two follow the
geopedological approach that consists of a synthesis of data from the characterization of the
geomorphological landscapes (vertical dissection, karst geomorphometrics, failures, geology)
and soils, and the third stage incorporating environmental components (climate and
vegetation) and related variables through various methods of statistical analysis (cluster,
principal components and classification analysis) to obtain the pattern of soil distribution and
to develop a model for the digital soil map of the study area.
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1. Introduction

According to Food and Agriculture Organization
(FAO), the plan for priority action in the field of soil
at a global level is the sustainable management of
soils. This can be achieved by increasing or maintain-
ing stocks of organic matter, stabilizing or reducing
the use of fertilizers of N and P and improving our
knowledge on the status and trends of soil conditions
(Montanarella et al., 2015). The challenge is to develop
maps that show the spatial and temporal variation of
the soil physicochemical conditions in ecosystems
(Grunwald, Thompson, & Boettinger, 2011; McBrat-
ney, Mendonça Santos, & Minasny, 2003).

A soil map is a graphical representation that is used
to transmit information about the spatial distribution
and attributes of soils. Early soil maps were derived
from topographic maps and were primarily used for
agricultural purposes. However, their compilation was
slow and expensive (Kempen, Brus, & de Vries, 2015).

At the end of the twentieth century, several
approaches to the study and mapping of soils emerged,
among them the geopedological approach proposed by
Zinck (1988). This approach focuses on the study of the
relationships between geomorphological and edaphic
variables, taking into account the physical environment
as an open system that occupies the interface between
lithosphere and atmosphere. The approach depends on
the stability of this interface, an understanding of the

physical environment both in its structure and its
dynamics (Zinck, 1988, 2012).

The emergence of new technologies has generated a
high demand for soil information in environmental
monitoring and modeling for a wide range of users
(including farmers, developers, politicians, decision-
makers, managers of natural resources, educational
institutions, planners, researchers and agronomists)
who manage many of the new projects on land use.
New generations of scientists are also attracted to the
spatial analysis of soils (Behrens & Scholten, 2006;
Hartemink et al., 2010).

Digital maps are an alternative to traditional maps in
terms of accuracy and cost and increase the interaction
and communication between various users (Hartemink
& Minasny, 2014; Minasny & McBratney, 2016).

A digital map is a database of soil properties based
on field and laboratory observations and quantitative
numerical models that allow inference of the spatial
and temporal variations of soil types and their proper-
ties from environmental variables such as the climate,
biota, relief, parental material, age and spatial position
(Model Scorpan) (McBratney et al., 2003) and
describes the uncertainty associated with the predic-
tions based on time-series data, providing information
about the dynamic properties of the soil (Carré,
McBratney, Mayr, & Montanarella, 2007; Lagacherie,
2008).
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The factors that led to the development of Digital
Soil Mapping (DSM) in recent years are: the availability
of spatial digital data (such as digital elevation models
(DEM), remote sensing images), new methods for ana-
lyzing data (statistical techniques, multivariate geosta-
tistics), spatial modeling in a geographic information
system (GIS) and the availability and capacity of the
computers to process data and access online infor-
mation (Grunwald et al., 2011; McBratney et al.,
2003; Miller & Schaetzl, 2016; Sanchez et al., 2009).

The DSM depends on an understanding of geopedo-
logical processes, and paleoenvironmental reconstruc-
tion, and is used to develop land use plans, which
may help to resolve some of the challenges of our
time such as food security, energy security, climate
change, environmental degradation, shortages of
water and threats to biodiversity and human health.
They can be quickly updated at low cost as new and
better data are generated (Brevik et al., 2016; Calzolari
& Filippi, 2016).

The aim of the present investigation was to carry out
spatial analysis of soils using the first stage of the geo-
pedological approach as a basis, and to compile a digi-
tal soil map of Quintana Roo, Mexico.

2. Study area

Quintana Roo is in the eastern Yucatan Peninsula,
between 17°40′ and 21°36′ north 86°44′ and 89°24′

west (Figure 1). The study area covers 50,843 km2

and has a population of about 1.5 million (INEGI,
2016).

The area has a predominantly low relief, the climate
is warm and humid with summer rains, with an aver-
age annual temperature of 27.6°C and an average
annual rainfall of 1263.3 mm (CNA, 2016). It lies on
a structure of tertiary sediments with some quaternary
deposits, composed mainly of calcite, dolomite and
small amounts of gypsum (Ordoñez & Garcia, 2010).
There are few surface rivers, because most of the
water moves underground, and there is an abundance
of karstic depressions such as sinkholes, uvalas and
cenotes. The most common soil groups are Leptosols,
Phaeozems, Vertisols and Gleysols, and the vegetation
is mainly medium and low tropical rainforest.

There are 23 natural protected areas that represent
25.3% of the surface in the study area (SINAP, 2016).
The main economic activities are tourism and trade.
Agricultural activity is focused in the south and
occupies less than 20% of the surface of the State.
Corn, sugar cane and timber are the main crops.

3. Methodology

The development of the digital soil map consisted of
three stages. The first two followed the geopedological
approach, and the third incorporated other variables
into the model to build and apply pedotransfer

Figure 1. Study area.
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functions that relate soil characteristics to other vari-
ables (Figure 2).

The first stage consisted of the geomorphometric
and spatial analysis of field data at a scale of 1:50,000
to identify landforms and to map the distribution of
limestone karst depressions and their flood types in
the state (Fragoso-Servón, Bautista, Frausto, & Pereira,
2014).

The second stage entailed the development of a
spatial distribution model of soils associated with pre-
viously identified landforms. This was done by adding
georeferenced soil data to their respective landforms.

The soil database is a compilation of field and lab-
oratory data from 412 field sampling points and
derived from four different sources (Table 1). Using
physical and chemical properties, soils were classified
in accordance with the World Reference Base system
(IUSS, 2007) and allocated to 14 major soil groups
(MSG) (Table 1). The resulting attribute table was
completed using the full data matrix built in the GIS
spatially joining climate and vegetation data reported
for the study area by INEGI (2005) and CONAFOR-
SEMARNAT (2011), respectively, to previously ident-
ified landforms.

Figure 2. Methodological diagram.
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This produced two data subsets, one of them formed
by all the 412 landforms fully qualified, including MSG,
and the other one without the MSG information.

For the third stage, the second subset was fully
quantified to assign MSG information to each land-
form as if we were using a pedotransference function
to link MSG to the other variables. To achieve this
goal, all landforms were classified, with all variables
were used to form classes, except for the MSG
information.

The classification algorithms were established using
data subsets consisting of landforms for which soil
information existed in addition to other variables.
Trained algorithms were applied to the full data matrix.
The full variable set and its domains are shown in
Table 2.

Landforms were clustered based on the similarity of
the first five variables and their respective domains. A
cluster analysis (CA), using the Gamma coefficient of
Goodman–Kruskal as the metric algorithm was per-
formed. This estimator is known as one of maximum
similarity that is useful to handle large volumes of hier-
archical data that match the order and the value (Nel-
son, 1986) (Equation (1)):

D = 1− Ns − Nd

Ns + Nd

( )
(1)

where D is distance or similarity between the pairs of
objects; Ns is the number of matching objects in attri-
butes and sequence and Nd is the number of different
objects on attributes and sequence. The linkage algor-
ithm used was the weighted mean.

This clustering analysis was validated by three tests
(Pseudo F, Pseudo-t test and consistency or distortion
of Dunn) to verify that the results are that of greater
likelihood:

a) A test of Pseudo F, provides the resulting tree and
has a probability value for the node formed with
regard to the probability of all nodes that make
up the group; hence, it appears frequently as
the null distribution in the variance analysis
(Equation (2)).

F = U1/d1
U2/d2

( )
(2)

where U1 and U2 follow a Chi-square distribution
with d1 and d2 degrees of freedom and U1 and U2

which are statistically independent.
b) Pseudo-t test, which consists of the comparison of

average distances and variances within and
between groups, representing the dispersion of
the nodes or density of the tree (Equation (3)).

t = X1 − X2

sX1−X2

(3)

where: X1 and X2 are intra and intergroup average
distances and sX1−X2

are differences of the variance
with respect to the sizes of the groups.

c) Consistency or distortion of Dunn for the validity
of the Grouping (Halkidi, Batistakis, & Vazirgian-
nis, 2002; Havens, Bezdek, Keller, & Popescu,
2008; Omran, Engelbrecht, & Salman, 2007)
(Equation (4)).

D = dmin

dmax
(4)

Table 1. Soils identified in Quintana Roo.

Source
No. of
points Soil groups identified

INEGI 91 Arenosols, Calcisols, Cambisols, Phaeozems,
Histosols, Leptosols, Luvisols, Regosols,
Solonchaks Nitisols, Vertisols, Gleysols, Fluvisols

CIGA-
UNAM

79 Arenosols, Calcisols, Cambisols, Gleysols,
Leptosols, Kastanozems, Phaeozems, Luvisols,
Nitisols, Solonchaks, Vertisols

INIFAP 57 Gleysols, Leptosols, Luvisols, Phaeozems,
Vertisols

UQRoo 185 Arenosols, Gleysols, Leptosols, Phaeozems,
Solonchaks, Cambisols, Luvisols, Regosols,
Nitisols, Vertisols

Note: Sources: INEGI (2008). CIGA-UNAM: Field work by Dr Francisco Bau-
tista Zúñiga (coauthor). INIFAP: Field work by MC Gonzalo de Jesús
Zapata Buenfil (coauthor). UQRoo: Field work by Dr Patricia Fragoso Ser-
vón (main author).

Table 2. Variables and their domains.

Vertical dissection (VD) Geology
Karstic form and types of

flood Climate Vegetation Soils (WRB)

Subhorizontal plain Holocene
Pleistocene.
Pliocene
Miocene
Oligocene
Eocene
Paleocene
Cretaceous

Sinkhole Permanent Aw0

Aw0(x’)
Aw1

Aw1(x’)
Aw2(x’)

Irrigated agriculture
Temporary Agriculture
Cultivated Forest
Cultivated pasture
Mangrove
Palmar
Tular
Popal
Savannah
High Jungle subperennifolia
Low Jungle subperennifolia
Low jungle subcaducifolia
Low torn Jungle subcaducifolia
Medium jungle subcaducifolia
Medium jungle subperennifolia

Gleysols
Leptosols
Luvisols.
Phaeozems
Vertisols
Arenosols
Regosols
Hystosols
Cambisols
Nitisols
Solonchaks
Kastanozems
Fluvisols
Calcisols

Wavy Plain Slightly dissected Temporary
Averagely dissected Rarely
Strongly dissected Uvala Permanent

Hilly Plain Slightly dissected Temporary
Averagely dissected Rarely
Strongly dissected Polje Permanent

Hills Slightly dissected Temporary
Averagely dissected Rarely
Strongly dissected Karstic Density***Density

of failuresMountain Slightly dissected
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where dmin is the minimum distance intergroup
and dmax is the maximum distance intragroup.

The result of this analysis is a consistent model of
the spatial distribution of soil, where data from a soil
group were used to assign polygons to the correspond-
ing group (MacMillan, 2004).

The next step is related to map validation and veri-
fication. The classes were verified by two types of stat-
istical analysis: principal components analysis (PCA)
and classification analysis (CA). The PCA identified
the sources of data set variability and sorted them by
importance (Jongman, Ter Braak, & van Tongeren,
1995).

The hierarchical model obtained from the PCA and
the data matrix including soil data was used as input to
estimate the uncertainty of the classification with the
program WEKA (Hall et al., 2009). Four classifications
using three different algorithms were performed:

. Classifications 1 and 2 were classifications using
decision tables with simple and exhaustive search
(Kohavi, 1995; Mukerjee, 2012);

. Classification 3 was a classification by construction
of exceptions to the initial rule (RIDOR – Ripple-
Down-Rules) (Gaines & Compton, 1995); and

. Classification 4 was a classification by partition rules
(PART) (Frank & Witten, 1998).

The final map shows the spatial distribution of soils.
This map was verified for consistency and accuracy
against soil and environmental field data.

4. Results

The first clustering identified 869 entities of identical
units by their attributes. To keep uncertainty as low
as possible, 85% of similarity was chosen as the
threshold value, resulting in 188 groups that depicted
various environmental conditions. This clustering
was validated by three tests: Pseudo F, Pseudo-t and
the distortion coefficient of Dunn.

Pedological information was spatially joined to the
groups formed by the CA to predict what soil types
are likely to be found in each of the polygons in relation
to the rest of the attributes, thus establishing a pedo-
transfer function that depicts the relationship between
soil and the other attributes for each polygon. Where
more than one soil group is assigned to a polygon,
only the first three most probable soil groups are
depicted on the map.

Sixty-five groups with no soil data are found in 103
polygons, representing 0.6% of the total number of
polygons and occupying only 0.2% of the state area.

To identify and sort the sources of variability in the
data set, a principal component analysis (PCA) was
performed, defining the variables that have greater

weight in the relationship between soils and attributes
depending on the set of similarities of the classes
formed (Table 3).

A chi-square test of the PCA results gave a value of
zero, indicating that the eigenvectors of the variables in
the data matrix are not equal or independent, thus
demonstrating the relationship that exists between
the soil-forming factors that were considered in the
analysis and the allocation of the soil types to the
map polygons.

The PCA shows seven variables that have the great-
est influence on the distribution of soils. This can be
seen in Figure 3, where the inflection point separates
the most important factors from the other variables
in the dataset.

Considering the individual variances and their con-
tribution to the total variance of the system, the analy-
sis shows that vertical dissection (VD) and karstic
forms contribute the most to the total system variance
(19.0% and 15.3%, respectively) and explain 34.3% of
the variation observed in the distribution of soils
(Table 3). Following these two variables, karst and
fault densities, and the flooding regime for karstic
depressions, form a second variable group which
along with the first group explain 51% of the variation.

Figure 3. Scree graph of contribution to the variance.

Table 3. Principal components analysis loadings.

No. Component Value
Percentage of

variance explained
Cumulative
percentage

1 VD and Karstic
form

5.32 19.0 19

2 Karstic Density 4.27 15.3 34
3 Density of

failures
2.70 9.6 44

4 Flood 2.00 7.2 51
5 Climate 1.63 5.8 57
6 Water bodies 1.26 4.5 61
7 Age of rocks 1.04 3.7 65
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The next group of components is formed by climate
followed by the presence of either temporary or perma-
nent bodies of water, and finally geology (age of par-
ental materials). These three variables account for
14% of the variability of the distribution of soils.

Together, these seven factors explain approximately
65% of the observed distribution of soils in the state.

Results from the analysis of classification (Table 4)
show that more than 83% of soil type assignments
are consistent and that polygons were correctly classi-
fied with the selected set of attributes once assigned
to its corresponding soil type.

The differences between the three algorithms in
terms of uncertainty (incorrectly classified polygons)
are insignificant (2.43%). However, analysis of the
respective confusion matrices shows that the PART
algorithm has the maximum reduction in uncertainty.

Comparing the relative weight of the seven variables
provided, and using PCA and the results of two non-
supervised assessments of subsets of the seven variables
used, it was found that three complex factors have
greater weight in the distribution of soils: landforms
(the VD and karstic forms), climate (rainfall and flood-
ing) and geohydrology (lithology and surface hydrology).

The relationships between the variables used in the
analyses define the relative importance of various fac-
tors on soil formation and allow the prediction of the
type or types of soil that can be found at any point
within the state (pedotransfer function). Current data
allow the compilation of the map with about 14% to
16% uncertainty, which is probably a result of data pre-
cision and suggests the need for more control points to
refine the model.

In the 14 identified soil groups (Table 5), the group
that occupies the largest part of the territory is Lepto-
sols (48.5%) followed by Gleysols and Phaeozems.
These three together occupy 75.6% of the State’s sur-
face (Figure 4). Soil groups that together account for

Table 5. Principal reference soil groups in Quintana Roo.
Principal reference soil group No. polygons Area (ha) %

Leptosol (LP) 7376 2,452,346.72 48.47
Gleysol (GL) 3386 782,927.46 15.47
Phaeozem (PH) 1306 575,975.61 11.38
Vertisol (VR) 707 377,514.63 7.46
Luvisol (LV) 813 278,484.66 5.50
Cambisol (CM) 616 255,075.29 5.04
Solonchak (SC) 291 114,348.10 2.26
Histosol (HS) 17 63,380.86 1.25
Arenosol (AR) 622 52,623.73 1.04
Nitisol (NT) 184 45,745.75 0.90
Calcisol (CL) 23 11,689.65 0.23
Kastanozem (KS) 75 7329.12 0.14
Regosol (RG) 35 1701.35 0.03
Fluvisol (FL) 5 266.53 0.01
No data 103 10,767.20 0.21
Water bodies 897 29,194.10 0.58
Total 16,456 5,059,370.81 100.00

Table 4. Confusion analysis results.

Method

No. of
polygons
examined

No. of
rules

Polygons
correctly
classified

Polygons
incorrectly
classified

Decision table
of simple
search

16,353 1119 83.26% 16.74%

Decision table
of exhaustive
search

15,353 1119 83.26% 16.74%

Exceptions
(ripple-
down-rules)

16,456 357,007 84.19% 15.81%

Partition rules
(PART)

16,456 389 85.69% 14.31%

Figure 4. Area occupied by principal soil groups in Quintana Roo.
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less than 1% of the surface are Calcisols, Kastanozems,
Regosols and Fluvisols.

Each polygon is dominated by a group of soils that
occupy the greatest area, with other groups of soils
make up smaller proportions (Table 6). This situation
is very frequent in Quintana Roo, where there are
different groups of soils in small areas. To qualify the
polygons and to build the map and its legend, only
the three soils that occupy the largest area of the poly-
gon were considered, resulting in 112 possible combi-
nations of soils. The representation of these
combinations and the database that accompanies it
constitute the digital map of soils of Quintana Roo, at
50 m pixel resolution (Main Map).

5. Conclusions

A digital soil map of Quintana Roo was compiled at
50 m pixel resolution using a geomorphopedological
approach to produce a map that reflects a synoptic
view of the geomorphology, environmental conditions
and associated soils.

This approach allows a thorough synthesis of
environmental information of the components (cli-
mate, vegetation, soil) and geomorphological land-
scapes (including VD, geomorphometrics of the
karst, faults and geology). Using various statistical
models (cluster, principal component and classification
analysis), the distribution pattern of soils in the terri-
tory was obtained.

The map shows a very high heterogeneity of soils in
the studied area linked to geomorphometric heterogen-
eity not described in studies conducted before 2010 and
earlier.

The methods used enabled the production of a map
with a relatively low uncertainty. These methods are
more useful for large-scale land management and
decision-making than those currently in use in México.

The map was compiled with data from soil-forming
factors and uses mathematical methods to infer infor-
mation for the places where there are no data thus
defining a pedotransfer function.

This research provides a new methodological frame-
work that can be applied in other places and at different
scales.

Due to its digital form, the whole database and the
corresponding map are easily updatable at reduced
costs at any scale equal or lower to the 50 m pixel
resolution.

The methodology used allows the attainment of
relatively low uncertainties for regional planning.

Software

The map was produced using Esri ArcGIS® to build and
manage the databases. Statistical analysis (clustering
and PCA) were performed using SYSTAT® v13 and
classification analysis was carried out using WEKA®.
The final map was produced in ArcGIS® and exported
to PDF format.
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