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Variation in size and shape sexual dimorphism in
the Sceloporus scalaris species group (Squamata:
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We attempted to identify the factors influencing size and shape dimorphism between sexes, as well as among
populations and species in the Sceloporus scalaris group (Sceloporus aeneus, S. scalaris, S. bicanthalis and
S. subniger). Our analysis focused on five morphological characteristics: snout—vent length, head length, head width,
forearm length and tibia length. The effect of environmental variables (precipitation and temperature) on these
variables was also tested. We found differences in morphological traits between sexes, and among populations of the
same species. The oviparous species (S. aeneus and S. scalaris) were larger in overall body size than the viviparous
species (S. bicanthalis and S. subniger). Differences in overall body size among populations were recorded only in
S. aeneus and S. scalaris. Male-biased sexual size dimorphism occurred in oviparous but not viviparous lizards
(except for one population of S. bicanthalis). An absence of sexual size dimorphism was also recorded in S. subniger
and some populations of the remaining species. Two different shape patterns were found; the first was female-
biased with larger relative body length in almost all populations, which could be explained by fecundity, and the
second was male-biased with relatively larger head and limbs in a few populations, which may be explained by
sexual selection. The patterns of sexual size and shape dimorphism show that environment, rather than phylogeny,
may be determining the extent of sexual dimorphism. These types of studies show the importance of an integrated
evaluation of interpopulation and interspecies variation to determine the factors that generate sexual dimorphism.

ADDITIONAL KEYWORDS: fecundity - geographical variation - lizards - populations - sexual selection.

INTRODUCTION

Sexual size dimorphism (SSD) in a taxon is a
phenomenon in which one sex is larger than the other,
mainly in body size (Andersson, 1994; Cox et al., 2003).
*Corresponding author. E-mail: ramibautista@gmail.com SSD has been explored in many vertebrate groups,
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such as amphibians and fishes, in which females are
usually larger than males (Liao et al., 2013; Jonsson
& Jonsson, 2015), while in others, such as mammals,
birds and reptiles, males are usually the larger sex
(Kratochvil & Frynta, 2006). Lizards are an ideal
model group to study SSD evolution because high
variation in the degree of SSD in lizard species has
been reported: male-biased in some families (e.g.
Tropiduridae, Teiidae: Brandt & Navas, 2013), female-
biased in others (e.g. Pygopodidae, Diplodactylidae:
Read, 1999; Cox et al., 2009) or no sexual dimorphism
(e.g. Anguidae, Gekkonidae, Scincidae: Cox et al., 2009).

Inlizard species of the genus Sceloporus, studies have
commonly examined only overall size dimorphism.
Three patterns of SSD have been reported: male-
biased, female-biased and no dimorphism (Fitch,
1978; Jiménez-Arcos et al., 2017). These patterns were
described based on a single morphological feature
(snout—vent length, SVL) and single-population data,
but such patterns can vary among (Ramirez-Bautista
et al., 2013; Jiménez-Arcos et al., 2017) and within
populations (Ramirez-Bautista et al., 2015; Ramirez-
Bautista et al., 2016a, 2016b). Thus, a more detailed
analysis of the morphology of a species, such as the
shape or relative dimensions of the head and limbs, may
provide a more comprehensive understanding of the
possible causes of the evolution of sexual dimorphism
because these structures have an important function
on the ecology (e.g. diet) or behaviour (e.g. escape
or defence of the territory) of the individuals (Cruz-
Elizalde et al., 2020; Lozano et al., 2020). Analysis of
the variation in sexual dimorphism patterns can help
to elucidate and identify the causes that promote these
variations (Jiménez-Arcos et al., 2017).

Patterns of sexual dimorphism have been explained
in different ways, such as growth rate differences
between males and females (Ruby & Dunham,
1984; Smith & Ballinger, 1994), fecundity (Olsson
et al., 2002; Pincheira-Donoso & Hunt, 2017), sexual
selection (Anderson & Vitt, 1990; Verrastro, 2004;
Ramirez-Bautista et al., 2008; Ramirez-Bautista
& Pavon, 2009) and niche divergence (Camilleri &
Shine, 1990; Perry, 1996; Hierlihy et al., 2013). Sexual
dimorphism is generally attributed to morphological
traits, which affect an individual’s ecology and
behaviour (Darwin, 1871; Andersson, 1994; Olsson
et al., 2002). For instance, the relatively larger heads
of males are believed to increase male success in
male—male rivalry, so this trait is considered to have
arisen through sexual selection (Olsson et al., 2002).
As mentioned above, the longer and wider body size of
females has been attributed to fecundity selection to
increase the space females have to hold the developing
eggs/embryos, larger clutch/litter size and/or larger
offspring at hatching (Andersson 1994; Olsson et al.,
2002; Cox et al., 2003; Jiménez-Arcos et al., 2017;

Pincheira-Donoso & Hunt, 2017). However, only a
small number of studies have tested these hypotheses
(Perry, 1996; Puga y Colmenares et al., 2019) because
a larger SVL in females could have occurred without
female-biased SSD (Pincheira-Donoso & Hunt, 2017).
To analyse these assumptions, we need to consider
other dimensions of morphological traits such as shape
(Lozano et al., 2020). In this regard, little is known
about variation among populations with respect to
body size and shape differences between females and
males (Dunham, 1982; Michaud & Echternacht, 1995;
Herrel et al., 2001; Ramirez-Bautista et al., 2016a,
2016b; Lozano et al., 2020), among different years of a
single species (Ramirez-Bautista et al., 2015, 2016a),
and even less in species of a single taxonomic group
(Herrel et al., 2002; Jiménez-Arcos et al., 2017).

Geographical variation in body sizes, and therefore
correlation with other structures such as the length
of the limbs reported in sexual dimorphism, can also
be influenced by variation in environmental conditions
(Zamora-Camacho et al., 2014; Slavenko et al., 2019).
An example of this is Bergmann’s rule, which states
that at higher elevations and latitudes (and therefore
at lower temperatures), body sizes will tend to be
larger (Bergmann, 1847). This hypothesis has been
widely tested in endotherms, and diverse studies have
addressed this rule in ectotherms, registering negative
results (Ashton & Feldman, 2003; Adams & Church,
2008; Pincheira-Donoso et al., 2008; Slavenko et al.,
2019). However, evidence for consistent climate effects,
especially among ectotherms, remains equivocal; for
example, the lizard genus Sceloporus includes some
species that follow Bergmann’s rule (e.g. S. undulatus,
S. jarrovi) and others that exhibit the inverse of
Bergmann’s rule (e.g. S. merriami, S. graciosus) at
the intraspecific level (Angilletta et al., 2004; Sears &
Angilletta, 2004). So, despite finding a general pattern
where it has been observed that environmental factors
do not influence the body size of many groups of
lizards (Slavenko et al., 2019), there are groups such as
the genus Sceloporus where there are species that do
present an effect (Angilletta et al., 2004). These effects
are influenced by a mix of factors such as variations
in temperature, precipitation, elevation or latitude
(Bergmann, 1847; Angilletta et al., 2004; Sears &
Angilletta, 2004).

Within the genus Sceloporus, the S. scalaris group
inhabits the central Mexican highlands, and is the
only Sceloporus species group to exhibit both parity
modes, oviparous and viviparous (Sites et al., 1992;
Creer et al., 1997). According to Grummer et al.
(2014), Leaché et al. (2016) and recently Bryson et al.
(2021) this group includes 12 species, nine of which
are oviparous (S. aeneus, S. aurantius, S. brownorum,
S. chaneyi, S. scalaris, S. slevini, S. unicanthalis,
S. dixoni and S. hesperus) and three are viviparous

© 2022 The Linnean Society of London, Biological Journal of the Linnean Society, 2022, XX, 1-19
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(S. bicanthalis, S. goldmani and S. subniger; Leaché
et al., 2016). Previous studies have described the
ecology and reproduction of some of these species
(Guillette, 1981, 1982; Guillette & Jones, 1985;
Guillette & Gongora, 1986; Ortega & Barbault, 1986;
Rodriguez-Romero et al., 2004, 2010, 2011; Ramirez-
Bautista et al., 2017); however, little has been studied
regarding size dimorphism and even less about shape
dimorphism in this group (Ramirez-Bautista et al.,
2016a; Jiménez-Arcos et al., 2017) or the relationship
with environmental factors or influence of reproductive
mode (Jiménez-Arcos et al., 2017).

Our goal here is to describe the body size and shape
and compare these traits between sexes, among
populations of each species and among species of the
S. scalaris species group. Also, we evaluate whether
morphological variation across populations and years
in the S. scalaris species group is driven by climate
conditions. Therefore, we test whether spatio-temporal
(i.e. across sites and years) variation in temperature
and precipitation explain body size and shape in these
species. All these species descend from a common
evolutionary ancestor. They are small-bodied and
terrestrial but differ with respect to their reproductive
mode (Ramirez-Bautista et al., 2017). We would
expect, on the one hand, that all species will have a
similar pattern of sexual dimorphism (male-biased,
size and shape) mainly in body size, with oviparous
and viviparous species being more similar within
their own populations (phylogenetic effect), and on the
other hand, that variations in the size and shape of all
morphological variables within a single species (among
populations) could be a response to environmental
pressures, mainly temperature and precipitation.

MATERIAL AND METHODS
STUDY AREA AND DATA COLLECTION

Environmental characteristics and vegetation types
for each locality (Fig. 1) (termed ‘populations’ in this
study) are detailed in Table 1. Most of the populations
are in the Mexican Transvolcanic Belt physiographical
region (except for La Michilia; Fig. 1).

We analysed 537 adult lizards (336 females and
201 males) from two scientific collections: Coleccién
Nacional de Anfibios y Reptiles, Instituto de Biologia
(CNAR-IBH), and the Museo de Zoologia, Facultad de
Ciencias (MZFC), both at the Universidad Nacional
Auténoma de México. The second author verified the
identity of specimens in 1999 that had been collected
from 1973 to 1993. Because the information comes from
scientific collections and morphology may vary over time
(Shine, 1992), in statistical tests, we controlled for ‘year’
of collection of lizards. The oviparous species included
in this study were S. aeneus (Cahuacan, N = 150, 35

males and 115 females; Citlaltépetl, N = 28, 11 males
and 17 females; Huamantla, N = 19, nine males and 10
females; Milpa Alta, N = 44, 16 males and 28 females;
Tulancingo, N = 19, nine males and 10 females, and
Uruapan, N = 15, four males and 11 females; from 1973
to 1993) and S. scalaris (Charahuén, N = 41, 17 males
and 24 females; and La Michilia, N = 58, 16 males and
42 females; from 1973 to 1987). The viviparous species
were S. bicanthalis [Atepec, N = 15, nine males and six
females; Parque Nacional El Chico (PNCH), N = 15,
seven males and eight females; Zoquiapan, N = 66,
33 males and 33 females; from 1973 to 1993] and
S. subniger (Nevado de Toluca, N = 67, 35 males and 32
females; from 1982 to 1983).

MORPHOLOGICAL ANALYSIS

We took the following measurements on each adult
specimen (from the right side in dorsal view) to the
nearest 0.01 mm: snout—vent length (SVL: measured
to the nearest 0.01 mm), head length (HL: + 0.01 mm;
distance from the anterior tip of the rostral scale to
the posterior margin of the left ear), head width (HW:
+ 0.01 mm; maximum width of the head, measured
as the distance between the posterior margins of the
left and right ears), tibia length (TL: + 0.01 mm) and
forearm length [FL: + 0.01 mm; measured from the
knee (TL) or elbow (FL) to the pad of the foot) in all
specimens examined (Ramirez-Bautista et al., 2014)].
We studied sexual size and shape dimorphism in
the S. scalaris group. Using the method of Mosimann
(1970) (which is currently in use due to the broad
explanatory power in size and shape analyses of
morphological variables; see Cruz-Elizalde et al., 2020;
Lozano et al., 2020), we removed the effect of size for
each specimen by using an index of individual size
(here ‘SIZE’, overall body size), and we then calculated
the ratio of each morphological variable to this index
(shape variables). SIZE was calculated as the fifth root
of the product of the variables SVL, HL,, HW, FL and
TL. SIZE and shape variables were log, -transformed
prior to analysis so that they could meet the conditions
for parametric tests. Details regarding the estimates
of shape variables are available in Lozano et al. (2020).

STATISTICAL ANALYSES

To analyse SSD, we used year as a covariate in a two-
way analysis of covariance (ANCOVA) to determine
the effect of species—sex and population—sex (and their
interactions) on SIZE. To explore for sexual shape
dimorphism (SSHD), we carried out multivariate analysis
of covariance (MANCOVA) using year as a covariate to
test for the effect of species—sex and population—sex
(and their interactions) on shape variables. For the
ANCOVA and MANCOVA tests, post-hoc tests were

© 2022 The Linnean Society of London, Biological Journal of the Linnean Society, 2022, XX, 1-19
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Figure 1. Collection sites for populations and species in the Sceloporus scalaris group along the Mexican Transvolcanic Belt
(1 = Cahuacén, 2 = Citlaltépetl, 3 = Huamantla, 4 = Milpa Alta, 5 = Tulancingo, 6 = Uruapan, 7 = Alchichica, 8 = Charahuén,
9 = La Michilia, 10 = Atepec, 11 = Parque Nacional El Chico, 12 = Zoquiapan, 13 = Nevado de Toluca).

used to identify differences between the effects and the
interaction. General discriminant function analyses
(GDFAs) were carried out to identify the shape variables
that best separated the groups of lizards (sexes, species
and populations) (Harris, 2013). Following the procedure
of Lozano et al. (2020), we selected the variables that
best separated the groups by exploring the correlations
between the first canonical axis of the GDFA and the
shape variables. Species scores were plotted on graphs.
Results were considered significant if P < 0.05. Statistical
analyses were calculated in the Statistica v.7.0 program,
and the measures were represented together with + 1
SE (Zar, 2010).

MULTILEVEL MODELLING APPROACH

We analysed how morphological variation was related
to variation in temperature and precipitation across
time and space using a generalized linear mixed model
(GLMM). We collected monthly data for maximum and

minimum temperature and total precipitation from the
WorldClim database for each locality where individuals
of the S. scalaris complex were collected and measured.
Temperature and precipitation data were averaged for
each year in each locality. We fitted GLMMs for each
trait across populations from the S. scalaris complex
using the /mer function from the /me4 R package (Bates
et al., 2015). We coded climate variables as fixed effects
and sites, sexes and years as random effects. Each
trait’s marginal effects were computed and contrasted
against temperature and precipitation to visualize which
features are more affected by climate gradients.

RESULTS

COMPARING OVERALL BODY SIZE AMONG SPECIES,
POPULATIONS AND SEXES

Variations occurred in body size and morphological
traits between sexes, and among populations of the
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SEXUAL DIMORPHISM IN SCELOPORUS SCALARIS GROUP 5

Table 1. Climate characteristics of geographical localities where Sceloporus scalaris group populations were collected.
Xeric scrub (XS), pine forest (PF), oak forest (OF), pine—oak forest (POF') and prickly pear field (PP). Average annual
values of temperature and precipitation are given with minimum and maximum values in parentheses. Populations are

ordered by latitude (north to south)

Locality Geographical location

Elevation (m) Annual average

Annual average Vegetation
temperature (°C) precipitation (mm) type

La Michilia (Durango) 23°30'10”N, 104°1546"W  1700-2950 12 (3.3-29.9) 480 (1-129) PF, POF

Tulancingo (Hidalgo) 20°05"14”N, 98°19'24"W 2181 14.9 552.9 XS

Parque Nacional El 20°11'15”N, 98°43'37"W 3035 12 1567.9 PF, POF
Chico (Hidalgo)

Cahuacén (Estado de 19°37°48”N, 99°25'54"W 2744 14.5 (2.1-25.5) 998 (8-216) POF
México)

Charahuén (Micho- 19°27’54”N, 100°42°05"W 2480 16.4 (4.5-27.7) 1041.2 (6-253) PF, OF
acan)

Uruapan (Michoacdn)  19°25'16”N, 102°03'47"W 1620 19.3 1427 PP

Huamantla (Tlaxcala) 19°19°02”N, 97°55'03"W 2553 14 (3-26) 1000 (9-129) POF

Milpa Alta (México 19°1220”N, 99°02'03"W 2460 15 (2.1-25.5) 718.7 (8-216) PF
City)

Nevado de Toluca 19°11'N, 99°50'W 3200 12 700-1200 PF, POF
(Estado de México)

Citlaltépetl (Puebla) 19°01"38”N, 97°20"34"W 2600-3200 10 (2.4-25.3) 1600 (7-153) POF

Zoquiapan (Estadode  19°20'N, 98°40'W 3000 11 1169.3 PF
México)

San Juan Atepec 17°26'N, 96°32"W 2000 15 (5.5-24.7) 998 (8-216) PF, OF
(Oaxaca)

same species. Descriptive statistics of morphological
variables are shown in Table 2. Results of the species—
sex ANCOVA showed differences in overall body size
(logSIZE) among species (F, ., = 77.9, P < 0.001)
and between sexes (F| ., = 19.5, P < 0.001), and a
significant interaction (¥, ,,; = 6.2, P < 0.001). The
population—sex ANCOVA showed differences among
populations (F, ., =26.2, P <0.001) and between sexes
(F =27.3, P < 0.001), and a significant interaction
(Fn! s12 = 1.9, P = 0.032). In females, S. scalaris was
larger than all other species, whereas in males, the
oviparous species (S. aeneus and S. scalaris) were
larger than the viviparous species (S. bicanthalis and
S. subniger) (Table 3; Fig. 2). We found differences
among populations in S. aeneus (F, ,., = 4.1, P =0.001)
and S. scalaris (F, ,, = 17.7, P < 0.001), but not in
S. bicanthalis (F, ., = 1.5, P = 0.236). When the sexes
were separated, females followed the same pattern,
but in males we only detected differences among
populations in S. scalaris (Table 4). The smallest
lizards in the S. scalaris group were in the Atepec
and Nevado de Toluca populations, and Charahuén
and La Michilia lizards were the largest (Fig. 3). Post-
hoc comparison tests showed male-biased SSD in
oviparous (S. aeneus: P < 0.001; S. scalaris: P < 0.001)
but not in viviparous lizards (S. bicanthalis: P = 0.185;
S. subniger: P = 0.602) (Fig. 2). At the population level,

1,512

males were larger than females in three populations
of S. aeneus (Cahuacan, Citlaltépetl and Huamantla),
and one of S. scalaris (Charahuén) and S. bicanthalis
(PNCH); however, we did not find differences in overall
body size between the sexes within S. subniger (Table
4; Fig. 3).

COMPARING BODY SHAPE AMONG SPECIES,
POPULATIONS AND SEXES

The species—sex MANCOVA showed statistically
significant differences in body shape among species
(Wilks’ L =0.768, F = 12.1, P < 0.001) and between sexes
(Wilks’ L = 0.728, F = 49, P < 0.001), and a significant
interaction (Wilks’ A = 0.947, F = 2.3, P = 0.006).
The population—sex MANCOVA showed significant
differences among populations (Wilks’ A = 0.598, F = 6.4,
P < 0.001) and between sexes (Wilks’ . = 0.779, F' = 36,
P < 0.001), but no significant interaction effect (Wilks’
A =0.839, F = 1.3, P = 0.074). In both sexes, comparisons
among species revealed differences in all shape variables
(Table 3). The oviparous species were smaller in relative
HW but larger in relative TL than the viviparous species,
and S. aeneus and S. subniger had relatively shorter FL
than S. scalaris and S. bicanthalis (Table 3). In females,
the oviparous species were smaller in relative SVL
(relative body length) but larger in relative HL than
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SEXUAL DIMORPHISM IN SCELOPORUS SCALARIS GROUP 7

Table 3. Results of ANCOVAs (by sex) comparing means of the log-version of the index of individual size (SIZE) and log-
shape variables among four species of the Sceloporus scalaris group

Characteristic/species Females Males

logSIZE F, ., =46.1,P<0.001 F, ,,=43.3,P<0.001
Sceloporus aeneus 1.088 1.119

Sceloporus scalaris 1.142 1.170

Sceloporus bicanthalis 1.084 1.093

Sceloporus subniger 1.084 1.079

logSVL/SIZE F, ., =74,P<0.001 F, ,=29,P=0.036
Sceloporus aeneus 0.587 0.569

Sceloporus scalaris 0.581 0.565

Sceloporus bicanthalis 0.591 0.559

Sceloporus subniger 0.597 0.571

logHL/SIZE F, ., =44,P=0.005 F, 156=5.1,P =0.002
Sceloporus aeneus -0.023 -0.021

Sceloporus scalaris -0.028 -0.031

Sceloporus bicanthalis -0.029 -0.023

Sceloporus subniger -0.031 -0.022

logHW/SIZE F, ., =11.21,P <0.001 F; 156 =20.7,P < 0.001
Sceloporus aeneus -0.148 -0.139

Sceloporus scalaris -0.160 -0.162

Sceloporus bicanthalis -0.142 -0.135

Sceloporus subniger -0.143 -0.131

logFL/SIZE F,,,=33P=0.021 F, 15=48,P=0.003
Sceloporus aeneus -0.273 -0.274

Sceloporus scalaris -0.262 -0.256

Sceloporus bicanthalis -0.264 -0.259

Sceloporus subniger -0.272 -0.280

logTL/SIZE F, ., =14.5,P <0.001 F, 14=11.3,P <0.001
Sceloporus aeneus -0.143 -0.136

Sceloporus scalaris -0.131 -0.116

Sceloporus bicanthalis -0.156 -0.143

Sceloporus subniger -0.151 -0.139

the viviparous lizards. In males, the smallest species in
relative SVL and HL were S. bicanthalis and S. scalaris,
respectively (Table 3). Within species, differences in
body shape among populations were found in S. aeneus
(females: relative HW, FL and TL; males: relative SVL),
S. scalaris (females: relative HL, HW, FL and TL; males:
relative HW) and S. bicanthalis (females: relative SVL
and FL; males: relative SVL) (Table 4). Two patterns
of SSHD were found in the S. scalaris group. The first,
female-biased shape dimorphism in relative SVL, was
present in all species and almost all populations (except
for the Citlaltépet]l and Tulancingo populations, Table
4). The second, male-biased shape dimorphism, was
recorded in some other shape variables and very few
populations (S. aeneus: Uruapan population, relative
HW; S. scalaris: La Michilia population, relative TL;
S. subniger: Nevado de Toluca, relative HL, HW and
TL) (Table 4). The GDFAs confirmed differences in body
shape between sexes (Wilks’ A = 0.716, P < 0.001; Fig. 4),
among species (Wilks’ A = 0.776, P < 0.001; Fig. 5) and

among populations (Wilks’ A = 0.594, P < 0.001; Fig. 6)
in the S. scalaris group. As can be seen in Table 5 and
Figures 4-6, there were more noticeable differences in
body shape between the sexes than among species or
populations. The variable that best separated the sexes
was relative SVL, females having relatively longer body
length than males (Table 5; Fig. 4). Relative HW and
TL separated the species and populations better. The
oviparous species were similar to each other and had
relatively smaller HW but relatively larger TL than the
viviparous species (Table 5; Fig. 5). Among populations,
Charahuén was the largest in relative TL and the
smallest in relative HW (Table 5; Fig. 6).

MULTILEVEL MODELLING APPROACH

We did not find mixed responses in variation in
morphological traits to temperature and precipitation
in the S. scalaris complex (Fig. 7). We did not detect
any climate signatures in body size traits (e.g. overall

© 2022 The Linnean Society of London, Biological Journal of the Linnean Society, 2022, XX, 1-19
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Figure 2. Comparison of means of the log-version of the index of individual size (SIZE) between sexes in oviparous and
viviparous lizards of the Sceloporus scalaris group. *Significant differences.

body size and shape or SVL; Fig. 7). Nor did we
observe strong climate signatures in limb traits (Fig.
7) or support for any effect of variation across years,
localities, sexes or species (Supporting Information,
Figs S1-S4). The computation of marginal effects for
GLMMs showed that no particular morphological
traits exhibited stronger responses across temperature
and precipitation gradients than others (Fig. 8).
Accordingly, the morphological response to climate
variation is complex, and context-dependent on the
trait examined; however, no effect of environmental
variables was found (Fig. 8).

DISCUSSION

SSD and SSHD have been recognized in several
vertebrate species (Andersson, 1994; Vanhooydonck
& Van Damme, 1999; Cox et al., 2003, 2009). In
lizard species, SSD has been found to be expressed
through morphological traits, such as allometry
(Kaliontzopoulou et al., 2007, 2008, 2010), SVL (Olsson
et al., 2002; Cox et al., 2003; Roitberg & Smirina, 2006;
Valencia-Limoén et al., 2014; Ramirez-Bautista et al.,
2016a), behaviour and colour patterns (Cooper & Vitt,
1989; Andrews & Stamps, 1994; Stephenson, 2010;
Stephenson & Ramirez-Bautista, 2012), and niche
divergence (Kaliontzopoulou et al.,2007; Hierlihy et al.,
2013). In this study, we used two different methods to
detect morphological differences among populations
and species, and to evaluate sexual dimorphism in the

S. scalaris group. First, we used an overall body size
comparison approach (applying an index of individual
size); second, we determined the shape attributes of
the body (shape variables). In addition, we evaluated
the relationship between spatial variation in
morphological traits and the environmental factors
temperature and precipitation.

We found that the oviparous lizards (S. aeneus
and S. scalaris) were different and larger in overall
body size than the viviparous lizards (S. bicanthalis
and S. subniger; Fig. 2), with each species being
more similar among its own populations (Fig. 3).
Specifically, the largest lizards in the S. scalaris
group were in the Charahuén and La Michilia
populations (S. scalaris), while those of Atepec and
Nevado de Toluca were the smallest (S. bicanthalis
and S. subniger, respectively). Differences in overall
body size among populations were recorded in
S. aeneus and S. scalaris but not in S. bicanthalis. In
addition, at the species level, male-biased SSD was
recorded in the oviparous but not in the viviparous
species (Fig. 2). However, at the population level,
some populations of oviparous lizards did not present
SSD (S. aeneus: Milpa Alta, Tulancingo, Uruapan;
S. scalaris: La Michilia), but one population of
viviparous lizards did (S. bicanthalis: PNCH; Fig.
3). These results can be explained by phylogenetic
(parity mode, oviparous vs. viviparous species) and
environmental effects (within-species and within-
population variation) acting on the S. scalaris group.
For instance, males and females of S. bicanthalis
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Figure 3. Comparison of means of the log-version of the index of individual size (SIZE) between sexes in populations of the

Sceloporus scalaris group. *Significant differences.
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Figure 4. Species scores for the first canonical axis of the GDFA including five log-shape variables of the Sceloporus

scalaris group. Comparison between males and females.

and S. subniger that inhabit high elevations are
smaller in SVL than the oviparous species (S. aeneus
and S. scalaris) from lower elevations; therefore,
viviparous species from colder environments
cannot attain larger SVL to produce and maintain
appropriate energy during the reproductive season

(Roitberg et al., 2015). These lizard species invest
more energy in growing to a larger SVL at the
beginning of the reproductive season, and then
direct all their energy to reproduction and none to
growth, as occurs in many lizard species from high
mountains (Lemos-Espinal et al., 1998).
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scalaris group. Comparison among populations.

Male-biased SSD could be explained by the sexual
selection hypothesis (Olsson et al., 2002; Cox et al.,
2003; Kaliontzopoulou et al.,2007,2008,2010; Valencia-
Limoén et al., 2014; Ramirez-Bautista et al., 2015,
2016a). As in most species of the genus Sceloporus,

males are larger than females in many morphological
structures, as also occurs in other genera of lizards
(Kaliontzopoulou et al., 2007, 2008, 2010; Valencia-
Limoén et al., 2014). As mentioned, this pattern was
found in half of the populations in oviparous species,
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12 R.CRUZ-ELIZALDE ET AL.

Table 5. Results of general discriminant function analysis (GDFA) by sex, species and populations of the Sceloporus
scalaris group. Correlations between the first canonical axis of GDFA and shape variables are shown. Variables that best

separated the groups are in bold type

GDFA (sexes) GDFA (species) GDFA (populations)

Canonical axes  Eigenvalue Wilk’'s A P-value Eigenvalue Wilk’'sA P-value Eigenvalue Wilk’sA P-value
First 0.395 0.717 <0.001 0.204 0.776 <0.001 0.377 0.595 <0.001
Second - - - 0.055 0.934 <0.001 0.099 0.819 <0.001
Third - - - 0.015 0.985 0.020 0.088 0.901 <0.001
Fourth - - - - - - 0.020 0.980 0.230
Shape variables Canonical axis 1 (correlations) Canonical axis 1 (correlations) Canonical axis 1 (correlations)
logSVL/SIZE 0.91 -0.11 -0.18

logHL/SIZE -0.14 -0.17 -0.44

logHW/SIZE -0.32 -0.89 -0.77

logFL/SIZE -0.03 0.21 0.28

logTL/SIZE -0.27 0.69 0.76

and in only one population of viviparous species
(Table 4). For example, the oviparous lizard S. aeneus
is territorial; therefore, males with larger overall body
size could be explained in the following ways: males
defend their territory against intruders (aggression),
mating success (male-male combat for access to
females) and intersexual selection (female choice).
These characteristics could explain males being larger
in overall body size (and other morphological traits)
to benefit male reproduction (Manriquez-Moran et al.,
2013; Ramirez-Bautista et al., 2016a, 2016b). Females
of S. aeneus reproduce from April to September, during
which they bear at least two clutches (frequencies;
Ramirez-Bautista et al., 2016a, 2016b); therefore,
larger males will be more competitive to reach sexual
maturity and success in reproduction during the
reproductive period to attain a higher number of
copulations (Stamps, 1993; Anderson & Vitt, 1990;
Haenel et al., 2003; Cox et al., 2003).

Thelack of SSD could be related to similarity between
males and females in sex ratio, low territoriality for
males or feeding niche convergence, as occurs in other
lizard species (Zamudio et al., 1998; Kaliontzopoulou
et al., 2007; Hierlihy et al., 2013; Ramirez-Bautista
et al., 2015, 2016a). As noted above, this pattern
could be explained by a low degree of polygyny (e.g.
S. siniferus, Hierlihy et al., 2013; Ramirez-Bautista
et al., 2015; S. spinosus, Ramirez-Bautista et al.,
2013; S. aeneus, Ramirez-Bautista et al., 2016a; this
study), or by non-territoriality, as occurs in other
lizard species (Cox et al., 2003; Hierlihy et al., 2013).
Population densities of the S. scalaris group could be
high for males and females; therefore, when densities
increase, mainly in females, males do not need to
look for females or to fight other males to access
females during reproduction. Males thus do not need

to increase in body size to maintain the population
during the reproductive period (Zamudio et al., 1998;
Ramirez-Bautista et al., 2015, 2016a).

Another explanation for a lack of SSD (and other
morphological features) could be related to colour
patterns. It has been well documented that when
males and females are similar in morphological traits,
males of the genus Sceloporus usually exhibit brighter
colours in the dorsal and ventral region (Ossip-Drahos
et al., 2016), as has been reported in viviparous
species (S. formosus, Ramirez-Bautista & Pavén, 2009;
S. dugesii, Ramirez-Bautista & Davila-Ulloa, 2009;
S. minor, Stephenson & Ramirez-Bautista, 2012;
Garcia-Rosales et al., 2017). This could be the case
in the S. scalaris group because the ventral region of
males presents dark blue patches and their gular region
presents black bars, which become more conspicuous
in the reproductive period (Ramirez-Bautista et al.,
2017). However, it is important to note that the colour
pattern is not a determining factor in SSD, but is a
characteristic associated with defence of territory and
courtship of females, being more successful in larger
males (Stephenson & Ramirez-Bautista, 2012; Garcia-
Rosales et al., 2017).

The multivariate analysis carried out in this study
revealed that the body shape variable that best
separated the sexes was relative SVL (elongation of
the body; see below), while relative HW and TL better
separated species and populations. The oviparous
lizards were similar to each other in some shape
variables (smaller in relative HW and larger in relative
TL) but different from the viviparous lizards (Table 3;
Fig. 5). Also, S. aeneus and S. subniger had relatively
shorter FL than S. scalaris and S. bicanthalis (Table
3). Our results indicate that a phylogenetic effect could
be acting on these species (as suggested for overall
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Figure 7. Estimates (fixed effects) of generalized linear mixed models for each trait regressed against climate variables.
tmax_year: maximum temperature averaged across a year; tmin_year: minimum temperature averaged across a year;
prec_year: precipitation averaged across a year.

body size). Additionally, we found variation among (i.e. mating, defence of territory) or use of resources

populations in several shape variables (within species, (i.e. microhabitat, size of prey) in the environment
Fig. 6), which could be a response to ecological causes (Vanhooydonck & Van Damme, 1999; Herrel et al.,2001).
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Figure 8. Marginal effects of morphological traits against climatic variables.

For instance, Lozano et al. (2020) observed strong
differences in body shape (head and limbs) between
populations of S. grammicus that inhabit different
environments. These authors suggested that shape
divergence may be due to structural features of the
habitats, which could also be the case with certain
morphological structures analysed in our study (see
Table 4).

We found two patterns of SSHD in the S. scalaris
group. The first was that females had relatively
longer SVL (elongated body) than similarly sized

males in all species and almost all the populations.
This kind of pattern has been mentioned (based
on body length) in pioneering (Darwin, 1871),
historical (Fitch, 1970, 1978; Vitt, 1986; Olsson et al.,
2002; Cox et al., 2003, 2009) and current studies.
Larger females than males are explained mainly
by fecundity (Horvathova et al., 2013; Scharf &
Meiri, 2013; Pincheira-Donoso & Hunt, 2017). The
fecundity advantage hypothesis focuses on selection
to maximize clutch/litter size in a given reproductive
episode, and it could be the case for both viviparous
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(S. formosus, Ramirez-Bautista & Pavén, 2009;
S. grammicus, Herndndez-Salinas et al., 2010;
S. bicanthalis, Rodriguez-Romero et al., 2004) and
oviparous (S. variabilis, Benabib, 1994; Ramirez-
Bautista et al., 2006; S. aeneus, Ramirez-Bautista et al.,
2016a, 2016b; this study) lizards in this study, as was
recognized in the fecundity hypothesis by Olsson et al.
(2002) and Cox et al. (2003).

The fecundity hypothesis better explains the larger
sizes in females; however, a larger size in females due
to fecundity does not necessarily result in female-
biased sexual dimorphism (Pincheira-Donoso & Hunt,
2017). For example, Olsson et al. (2002) showed that a
positive directional fecundity selection in Niveoscincus
microlepidotus targets female trunk length for
increased fecundity, but males were significantly
larger in body size (i.e. male-biased SSD). This study
supports the fecundity prediction, but not the body size
(or SSD) prediction of fecundity selection. Also, another
possible explanation of SSHD in females is selection
favouring small relative SVL in males (elongation
of the body). For instance, selection for small-bodied
males could be due to early maturation of males,
different sex ratios or changes in the skewness of the
male body size distribution, as occurs in the species
Phrynosoma douglasi, P. ditmarsi and P. hernandezi
(Zamudio et al., 1998).

The second pattern was found in very few populations.
Male-biased SSHD was recorded in S. aeneus (Uruapan:
relative HW), S. scalaris (La Michilia: relative TL)
and S. subniger (Nevado de Toluca: relative HL, HW
and TL). Previous research in lizards has suggested
that the shape of the head and limbs in males are
important morphological features linked to territorial
defence and mating (Butler & Losos, 2002; Herrel
et al., 2006; Huyghe et al., 2009; Lozano et al., 2020);
therefore, differences in body shape between sexes in
the S. scalaris group could also be explained by sexual
selection. The same pattern has been observed in other
species of the genus Sceloporus such as S. grammicus
(Lozano et al., 2020) and S. variabilis (Cruz-Elizalde
et al., 2020). However, this result can be applied to any
species with male-biased sexual dimorphism, so that a
greater number of studies focused on the form—function
relationship of the analysed characteristics can give a
better explanation of the result found in males.

Considering environmental factors, in general no
pattern was observed where the overall body size and
the shape variables might increase as the maximum and
minimum temperature of the study sites increases. For
example,headlengthdidnotvaryacrosstemperatureand
precipitation, but head width decreased slightly toward
higher maximum temperatures and more precipitation
(Fig. 8), and limb traits (fore and hindlimb) exhibited
different responses, showing larger dimensions toward
higher maximum temperatures and more precipitation

(Fig. 8). These results largely coincide with the inverse
of Bergmann’s rule (Ashton & Feldman, 2003; Olalla-
Tarraga & Rodriguez, 2007; Slavenko et al., 2019;
Velasco et al., 2020). This result can be explained by the
way temperature is thermoregulated, since heliotherm
reptiles occur in cold winter environments, such as the
species of the Scalaris group (Mathies & Andrews, 1995;
Andrews, 1998). A wide number of studies have shown
that annual and daily activity and thermoregulatory
processes in cold climate lizards may vary substantially
in comparison to warm climate lizards (Lara-Reséndiz
et al., 2014), but there are no studies that show an
effect of these behaviours on body size (Sagonas et al.,
2013). For example, Mathies & Andrews (1995) showed
that S. scalaris has less activity time in high-elevation
populations than in low-elevation populations, and has
a smaller body size in the high-elevation populations
than low-elevation populations.

In conclusion, we have recorded differences in sexual
dimorphism between sexes, populations and species of
the S. scalaris group. The oviparous species (S. aeneus
and S. scalaris) were larger in overall body size than
the viviparous species (S. bicanthalis and S. subniger).
The same pattern of differences in size was recorded
only for populations of S. aeneus and S. scalaris. The
pattern of female-biased sexual dimorphism was more
common than male-biased sexual dimorphism, at both
the species and the population levels. This result differs
from the general pattern for species of the genus, where
male-biased dimorphism is more common. When shape
is analysed, two patterns were found: one where the
females presented larger relative sizes, which could
be explained by fecundity, and the other where males
were larger in relative sizes, which may be explained
by sexual selection. Temperature and precipitation had
no effect on body size or on any of the morphological
variables analysed. Based on the results obtained
from this study, we identify a need for a more detailed
analysis of the morphological variables of the species of
the genus Sceloporus at the intra- and inter-population
level. This, together with conducting further analyses of
size and shape, will allow us to explore the factors that
promote sexual dimorphism in the genus Sceloporus
and other highly diverse species groups.
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SUPPORTING INFORMATION

Additional Supporting Information may be found in the online version of this article at the publisher’s web-site:

Figures S1-S4. Standardized coefficients for random effects for each trait. Variation across years, localities, sexes

and species was fitted as a random effect.
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