

Energía por Gradiente Térmico G-LE2

INGENIERÍA DE DETALLE, PARTE 3: DIMENSIONAMIENTO, CÁLCULO DE CAÍDA DE PRESIÓN E INSTRUMENTACIÓN DEL PROTOTIPO OTEC-CC-MX-1kWE

Centro Mexicano en Innovación de Energías del Océano

Acrónimo:	CEMIE-Océano			
Número de etapa:	6	Fecha de entrega	15/02/2020	
Nombre de la línea:	Energía por Gradiente Térmico			
Responsable de la línea:	Dr. Miguel Ángel Alatorre Mendieta			
Nombre de la acción:	Desarrollo de prototipos y microplantas para la obtención y almacenamiento de energía a partir de gradientes de temperatura específicamente diseñados para optimizar los procesos a partir de las características de los recursos nacionales			
Responsable de la acción:	Dra. Estela Cerezo	Acevedo		
Título del entregable:		alle, parte 3: dimensiona e instrumentación de tub /e.		
Autores: (Indicar entre paréntesis su adscripción)	 Dra. Estela Ce Dr. Víctor Mai M.C. Juan Frai Dr. Miguel Án 	iadalupe Tobal Cupul (UN rezo Acevedo (UNICARIB nuel Romero Medina (UN ncisco Bárcenas Graniel (gel Alatorre Mendieta (IC irique Luna (ICMyL)	E) IICARIBE) UNICARIBE)	
Estatus: (Final, Avance, Borrador, Aprobado)	Avance			
Página de internet del proyecto:	www.cemieocear	no.mx		
Inicio del proyecto:	01 de enero de 2017.			
Notas				

CONTENIDO

CONTEN	NIDO	III
ÍNDICE [DE FIGURAS	IV
ÍNDICE [DE TABLAS	V
1. INT	RODUCCIÓN	1
1.1.	PROTOTIPO DE PLANTA OTEC DE 1 KWE	1
1.2.	DIMENSIONAMIENTO DE TUBERÍAS Y CAÍDA DE PRESIÓN	4
1.3.	Variables que afectan la eficiencia del ciclo OTEC	4
1.4.	TIPOS DE INSTRUMENTOS DE MEDICIÓN Y CONTROL SEGÚN LAS VARIABLES DEL PROCESO	6
1.5.	Norma ISA 5.1 para la instrumentación industrial	11
2. MA	ATERIALES Y MÉTODOS	14
2.1.	DIMENSIONAMIENTO DE TUBERÍAS	14
2.2.	CÁLCULO DE LA CAÍDA DE PRESIÓN	15
2.3.	DETERMINACIÓN DE LA INTERACCIÓN ENTRE LAS VARIABLES DEL PROCESO Y LOS EQUIPOS	17
2.4. (CAMPO	CÁLCULO DE CONDICIONES TEÓRICAS MÍNIMAS Y MÁXIMAS DE LAS VARIABLES DEL PROCESO A MED	
2.5.	DIAGRAMA DE TUBERÍAS E INSTRUMENTACIÓN	20
3. RES	SULTADOS	20
3.1.	DIÁMETRO DE LA TUBERÍA DE COBRE EN LAS LÍNEAS DEL FLUIDO REFRIGERANTE	20
3.2.	Caída de presión de la bomba al evaporador	21
3.3. ĸWE	CONDICIONES GENERALES DE OPERACIÓN DEL CICLO RANKINE DEL PROTOTIPO DE PLANTA OTEC D 24	E 1
3.4.	Instrumentos de medición y control seleccionados	24
3.5.	DIAGRAMA DE TUBERÍAS E INSTRUMENTACIÓN DEL PROTOTIPO DE PLANTA OTEC DE 1 KWE	26
4. TRA	ABAJO FUTURO	29
5. REF	FERENCIAS	29
6. AN	EXOS	32
6.1.	EQUIPOS Y VÁLVULAS DEL SISTEMA DE CALENTAMIENTO DEL PROTOTIPO OTEC-CC-MX-1kWe	32
6.2.	EQUIPOS Y VÁLVULAS DEL SISTEMA DE ENFRIAMIENTO DEL PROTOTIPO OTEC-CC-MX-1kWe	34
6.3.	EQUIPOS Y VÁLVULAS DEL SISTEMA OTEC DEL PROTOTIPO OTEC-CC-MX-1kWe	36

ÍNDICE DE FIGURAS

Figura 1. Esquema conceptual de una planta OTEC de ciclo cerrado	2
Figura 2. Sistema de calentamiento (izquierda) y enfriamiento (derecha) del prototipo de	planta
OTEC-CC de 1 kWe.	3
Figura 3. Primer diagrama conceptual del prototipo de planta OTEC-CC de 1kWe	3
Figura 4. Diagrama de T-s de un ciclo Rankine ideal simple	5
Figura 5. Diagrama general de los tipos de instrumentos existentes para medir el flujo o cau	dal 10
Figura 6. Tipos de líneas según el tipo de tubería del proceso	13
Figura 7. Tipos de líneas según la señal que se transmita en el proceso	13
Figura 8. Simbología para los tipos de válvulas más comunes	13
Figura 9. Simbología para los tipos de válvulas con actuadores	14

ÍNDICE DE TABLAS

Tabla 1. Características generales de los instrumentos para medir la temperatura	8
Tabla 2. Simbología utilizada para las especificaciones de los instrumentos del proceso segú	n la
norma ISA S5.1	12
Tabla 3. Características de los tubos de cobre tipo M	15
Tabla 4. Coeficientes de presión para accesorios y conexiones de cobre	16
Tabla 5. Variables de control y su interacción con los equipos del prototipo de planta OTEC-CC o	de 1
kWe	18
Tabla 6. Datos básicos en la entrada y salida de la turbina	19
Tabla 7. Longitud total de las tuberías en las líneas que van de la bomba a la turbina	21
Tabla 8. Constante de caída de presión en accesorios en las líneas de la bomba a la turbina	22
Tabla 9. Caídas de presión en dos líneas del prototipo OTEC-CC-MX-1kWe	23
Tabla 10. Estados termodinámicos en dos líneas del prototipo OTEC-CC-MX	24
Tabla 11. Límites máximos y mínimos de operación del prototipo de planta OTEC-CC de 1 kWe	24
Tabla 12. Especificaciones técnicas para el sensor de temperatura a utilizar en el prototipo de pla	anta
OTEC-CC de 1 kWe.	25
Tabla 13. Especificaciones técnicas de la opción A de transmisión de presión	25
Tabla 14. Especificaciones técnicas de la opción B de transmisores de presión para el prototipo	o de
planta OTEC-CC	25
Tabla 15. Especificaciones técnicas del flujómetro Vórtex	25
Tabla 16. Especificaciones técnicas para el medidor de flujo másico propuesta I	26
Tabla 17. Especificaciones técnicas para el medidor de flujo másico propuesta II	26
Tabla 18 Instrumentos de medición y control utilizados en el prototipo de planta OTEC-CC de 1 k	kWe
	27
Tabla 19 Colores de la tubería para cada subsistema y bloques utilizados en el programa	29
Tabla 20. Equipos y válvulas del sistema de calentamiento	32
Tabla 21. Equipos y válvulas del sistema de enfriamiento	34
Tabla 22. Equipos y válvulas del sistema OTEC	36

1. INTRODUCCIÓN

El presente informe técnico contiene el avance de la ingeniería de detalle la 6ta etapa del proyecto "Desarrollo de prototipos y microplantas para la obtención y almacenamiento de la energía, a partir de gradientes de temperatura específicamente diseñados para optimizar los procesos, a partir de las características de los recursos naturales", cuyo objetivo principal es el diseño y construcción de un prototipo de planta de conversión de energía térmica oceánica (OTEC, por sus siglas en inglés) de 1 kWe (OTEC-CC-MX-1kWe). Se presenta el análisis y desarrollo de la ingeniería de detalle de la construcción del prototipo dividido en:

- 1) Dimensionamiento de las tuberías por las que circulará el fluido de trabajo,
- 2) Cálculo de caída de presión en tuberías y accesorios,
- 3) Instrumentación y control del prototipo y
- 4) Diagrama de tuberías e instrumentación.

El documento está constituido de: i) Introducción; en esta sección se hace un resumen sobre el avance la construcción del prototipo OTEC-CC-MX-1kWe y se describen los conceptos generales de cada uno de los cuatro puntos antes mencionados, ii) los materiales y métodos y iii) los resultados de los cálculos referentes a las tuberías del fluido de trabajo y la selección de instrumentos de control y medición para el prototipo. Además, se anexa el plano 2D de tuberías e instrumentación (P&iD, por sus siglas en inglés) del prototipo de planta OTEC de todo el proceso utilizando un programa de diseño asistido por computadora, siguiendo las reglas de nomenclatura y simbología de la norma ISA 5.1, misma que se incluye en el software utilizado. Este diagrama P&ID debe establecer todos los elementos esenciales para el desarrollo del proceso, así como la relación de los instrumentos de control con los equipos (Robles, 2014).

1.1. PROTOTIPO DE PLANTA OTEC DE 1 KWE

El Centro Mexicano de Innovación en Energía del Océano (CEMIE-O) nace como parte de la iniciativa del Gobierno Federal, en cuyo Plan Nacional de Desarrollo de 2012-2018 se hace referencia al uso de las fuentes de energía renovable para ayudar a la productividad y desarrollo de México en el campo de la ciencia y la tecnología del sector energético (Secretaría de Energía, 2018).

El CEMIE-Océano se divide en distintas líneas transversales y estratégicas, una de éstas últimas es la de "Energía por gradiente térmico", línea estratégica con la que colabora la Universidad del Caribe desde 2017 (Instituto de Ecología, Pesquerías y Oceanografías del Golfo de México y Universidad Autónoma de Campeche, 2018).

La acción "Desarrollo de prototipos y microplantas para la obtención y almacenamiento de energía a partir de gradientes de temperatura específicamente diseñados para optimizar los procesos a partir de las características de los recursos nacionales" (G-LE2) se encarga del diseño y desarrollo de un prototipo de planta de conversión de energía térmica oceánica, llamada planta OTEC, de 1 kWe, mismo que se encuentra en el Laboratorio de Mecánica de la Universidad del Caribe. Las plantas OTEC convierten la diferencia de temperatura entre el agua superficial y subsuperficial del océano en energía eléctrica mediante un ciclo termodinámico llamado ciclo Rankine.